
The Open Dermatology Journal ISSN: 1874-3722
DOI: 10.2174/0118743722461284260209104738, 2026, 20, e18743722461284 1

REVIEW ARTICLE OPEN ACCESS

Nanobiomaterials for Skin Tissue Engineering and
Regenerative Medicine: From Mechanistic Under-
standing to Clinical Translation
Ali  Golchin1,*,  Sanaz  Sadigh2,  Sima  Jafari3,  Hana  Ranjbari4,  Maryam  Rahnama1,  Navid
Ghasemzadeh5,  Aynaz  Mihanfar5,  Forough  Shams6  and  Ali  Mohammad  Amani7

1Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran,
Iran
2Department of Clinical Pathology and Internal Medicine, Faculty of Veterinary Medicine, Urmia University, Urmia,
Iran
3Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
4Faculty of Dentistry, Urmia University of Medical Science, Urmia, Iran
5Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
6School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
7Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University
of Medical Sciences, Shiraz, Iran

Abstract:
Cell- and tissue-based therapy, as the main subfields of regenerative medicine, are critical interdisciplinary fields that
are anticipated to constitute a significant portion of future medicine. To design and develop more effective cell- and
tissue-based therapies for a diverse array of medical uses, particularly in the fields of skin tissue engineering and
regenerative  medicine,  nanotechnology,  biomaterial  sciences,  stem  cell  biology,  and  biomedical  engineering,
researchers are collaborating. Recently, the emergence of nanotechnology has revolutionized the landscape of skin
tissue  engineering  and  regenerative  medicine  by  enabling  the  development  of  advanced  nanobiomaterials  and
nanostructures with unparalleled functional and engineering properties. This narrative review aims to investigate the
various applications of nanotechnology-based knowledge in cell- and tissue-based therapies for skin regeneration and
dermatological  practices.  This  study  addresses  the  effects  of  nanotechnology-based  approaches  on  biological
responses, cell behavior, tissue integration, and the functional recovery of biological structures. Furthermore, the
study highlights the promise of combining nanobiomaterials with cell engineering approaches to advance therapeutic
outcomes in skin repair. According to a literature review, nanobiomaterials that are both effective and supportive can
help produce structures resembling natural biological ones, alter the extracellular matrix, and direct stem cell fates.
Nevertheless,  the  aim  of  the  study  is  to  encourage  additional  research  and  innovation,  thereby  establishing  the
foundation for the development of next-generation regenerative therapies for skin conditions and dermatology.
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1. INTRODUCTION
The  skin  is  one  of  the  most  important  and  vital

structures in the body, making up about 16% of an adult's
total body weight. Any damage to the skin's structure can
have catastrophic effects,  including injury, recuperation,
long-term  problems,  and  even  mortality  [1].  Skin  is  the
most important link between a multicellular organism and
its  environment.  It  is  made up of  many layers,  including
the epidermis (which protects against water), the dermis
(which  gives  the  skin  strength  and  elasticity),  and  the
hypodermis  (which  lies  beneath  the  dermis)  [2,  3].  The
skin is important for more than just its physical makeup. It
also  helps  keep  the  body  at  a  functional  temperature,
prevents dehydration, and protects against several outside
hazards,  such  as  mechanical,  chemical,  thermal,  and
pathogenic  agents,  and  UV  exposure  [4].  However,
constant contact makes skin tissue prone to harm, which
can lead to serious medical problems, from hospitalization
to  life-threatening  infections  [5].  Traditional  therapeutic
approaches,  including  autologous  skin  grafts,  have
considerable  clinical  constraints,  such  as  donor  site
mortality, limited accessibility for severe burns, and often
suboptimal  cosmetic  and  functional  outcomes  [6].
Moreover,  allogeneic  transplantation  carries  a  risk  of
immunological  failure.  Consequently,  the  pressing
necessity to completely regenerate functioning skin tissue
has driven progress in skin Tissue Engineering (TE) and
Regenerative Medicine (RM) [7-9]. This multidisciplinary
field integrates medicine, biology, materials science, and
engineering  principles  to  create  effective  biological
replacements  designed  to  restore,  preserve,  or  augment
the performance of damaged tissues, thereby proving their
significance in the management of severe dermatological
conditions  [8,  9].  The  “tissue  engineering  triad,”  which
includes cells, biologically active signaling molecules, and
a  supportive,  flexible  scaffold,  is  the  cornerstone  of  TE
[10, 11]. The scaffold is likely the most essential element,
as  it  must  physically  and  physiologically  replicate  the
natural Extracellular Matrix (ECM). However, the ECM is
a  dynamic  network  that  offers  mechanical  durability,
biochemical  signals,  and  a  structural  framework  crucial
for  governing  cell  adhesion,  migration,  proliferation,
differentiation, and tissue remodeling [12, 13]. The goal of
contemporary TE is to obtain superior results through the
utilization  of  cutting-edge  nanotechnology-based
approaches  [14].  Techniques  that  enable  the  accurate
manufacturing  of  materials  at  the  nanoscale  (1–100 nm)
can  be  used  to  create  scaffolds  that  closely  mimic  the
fibrous  architecture,  high  porosity,  and  surface-area-to-
volume ratio of the native extracellular matrix (ECM) [15].
This  results  in  a  significant  improvement  in  the
communication  between cells  and  the  matrix,  as  well  as
the  possibility  of  regeneration  [16,  17].  Therefore,  in
addition  to  well-mimicked  scaffold  fabrication,
nanotechnology-based  knowledge  can  improve  stem  cell
research  by  enhancing  their  survival  and  functionality.
However, different cell types from different sources can be
used  for  TE  and  RG  purposes.  Stem  cells,  including
embryonic stem cells, induced pluripotent stem cells, and

mesenchymal  stem  cells,  as  well  as  differentiated  cells,
such  as  keratinocytes  and  fibroblasts,  are  high-potency
cell sources available for use in skin TE and RM [7, 18-20].
This review paper comprehensively reviews and critically
evaluates recent advancements in nanotechnology-driven
approaches  for  skin  TE.  Recent  advancements  in
biomimetic  nanostructured  scaffolds  are  examined,  the
most  efficient  nanofabrication  methods  (including
electrospinning and 3D bioprinting) are outlined, and the
use  of  diverse  nanomaterials  (natural,  synthetic,  and
hybrid)  in  enhancing  wound  healing  and  implementing
anti-aging strategies is analyzed. The existing limitations
and future prospects for the therapeutic implementation of
these revolutionary nano-engineered skin substitutes are
emphasized.

2. SEARCH STRATEGY
A  non-systematic  search  was  performed  across

PubMed, Scopus, Web of Science, and Google Scholar to
establish the foundational basis for this narrative review.
The terms used were “nanobiomaterials,” “nanomaterials,”
“skin  tissue  engineering,”  “regenerative  medicine,”
“nanofibers,” “electrospinning,” “3D bioprinting,” “wound
healing,”  and  “nanoparticles.”  The  sources  were  chosen
because they were relevant to the use of nanotechnology
in skin regeneration, focusing on recent developments and
the medical uses of the technology.

3.  NANOTECHNOLOGY  IN  SKIN  REGENERATIVE
MEDICINE: PRINCIPLES AND BIOMIMICRY

Nanotechnology  is  an  extensive  area  that  includes
many areas of science, from molecular biology to research
on  improved  materials.  The  main  goal  is  to  create,
manipulate,  and  control  materials  at  the  nanoscale  with
great  precision  to  achieve  better  or  new  functions  [21].
The effective integration of nanotechnology has radically
altered RM, particularly in TE and pharmaceutical delivery
systems  [22].  The  overall  benefit  has  mostly  come  from
combining  nanoscale  materials  with  multifunctional
polymers  to  make  pharmaceutical  designs  and  target
tissues  far  more  effective  and  biocompatible  [22].  All
native  tissues  exhibit  unique  structural  attributes  at  the
nanoscale,  and  it  has  been  conclusively  established  that
the  integration  of  nano-topographies  onto  biomaterial
surfaces significantly enhances the functionality, affinity,
and accessibility of various cell types. People often call the
materials  made  this  way  “bio-nanomaterials”  [23].
Nanotechnology expansion efforts generally focus on two
strategic methodologies: modifying the chemical structure
of  a  material  or  altering  its  physical  characteristics,
including  visual  shape,  an  enhanced  surface  area-to-
volume  ratio,  or  mechanical  characteristics  such  as
improved tensile strength, hardness, and Young's modulus
[24].  These  unique  characteristics  allow  for  the  exact
modification  of  biomaterials  by  changing  chemical  and
biological factors to improve positive cellular connections
and physical signaling capabilities [21]. Although the skin
is  the  largest  organ  and  serves  as  the  principal
physiological  protection,  it  is  perpetually  subjected  to
injury  [25].  Nanotechnology facilitates  the  fabrication  of
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nanomaterials  and  nanoconstructs,  which  are  pivotal  in
developing an effective therapy method based on TE and
RM  (Fig.  1).  Nanoscience  thus  offers  a  vital  technical

conduit  to  enhance  and  expedite  advancements  in  skin
regeneration, wound healing, and anti-aging strategies.

Fig. (1). Applications of nanotechnology in skin RM. (A) Compounds used in skin regeneration are categorized based on their origin into
natural nanostructured polymers, synthetic nanostructured polymers, and inorganic nanoparticles, which can function as scaffolds or
nanocarriers.  (B)  Nanomaterials  enhance  skin  regeneration  through  various  approaches,  including  the  use  of  implantable  scaffolds
fabricated by 3D bioprinting or electrospinning, as well as nanocarriers designed to deliver active therapeutic agents to injured skin.
Utilization of nanotechnology in skin regenerative medicine. Substances employed in skin regeneration are classified by their origin into
natural  nanostructured  polymers,  synthetic  nanostructured  polymers,  and  inorganic  nanoparticles,  which  serve  as  scaffolds  or
nanocarriers.  Nanomaterials  facilitate  skin  regeneration  using  multiple  methods,  including  implantable  scaffolds  created  via  3D
bioprinting  or  electrospinning  and  nanocarriers  engineered  to  transport  effective  medicinal  medicines  to  damaged  skin.
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Table 1. Comparison of key nanofabrication techniques for skin scaffolds.

Technique Principle Advantages Limitations Applications in Skin
TE Refs.

Electrospinning
High-voltage ejection of polymer
jet to form nanofibers (100
nm–microns)

Affordable, scalable; high porosity,
oxygen permeability; antimicrobial
potential

Sensitive to parameters (e.g.,
voltage, humidity); 2D sheets
dominant

Wound dressings; ECM-
mimicking fibers [28]

Self-Assembly

Spontaneous molecular
coordination via non-covalent
interactions (e.g., van der Waals,
hydrophobic)

Biomimetic; forms
nanotubes/fibers; enhances
angiogenesis (e.g., with PAs)

Weak interactions; pH/ionic
sensitivity; scalability
challenges

Drug/gene delivery;
nanofibrous hydrogels [26, 29]

3D Bioprinting

Additive deposition of bio-inks
(cells, hydrogels) via CAD;
subtypes: inkjet, microextrusion,
SLA

Precise layering; high resolution;
in vivo printing possible

Viscosity/cell viability issues;
complex for multi-component
tissues

Full-thickness skin
models; porous scaffolds [8, 30]

Cell-Imprinting
Topographical guidance mimicking
ECM morphology for stem cell
behavior

Optimized microenvironment;
promotes adhesion/migration

Limited to specific cell types;
fabrication complexity

ADSC reshaping for
keratinocyte cues [31, 32]

4.  ADVANCED  NANOFABRICATION  TECHNIQUES
FOR SKIN SCAFFOLDS

Creative  strategies  are  used  to  create  advanced
nanoscale  scaffolds  for  imitating  the  natural  ECM.
Electrospinning, self-assembling, 3D bioprinting, and cell-
imprinting  are  the  main  nanostructured  platform
production  methods  [26].  Microfluidics  and  'organ-on-
chips'  models  provide  dynamic,  high-throughput
assessment  of  synthetic  skin  replacements,  providing  a
more  precise  physiological  backdrop  for  preclinical
evaluation  [27].  Table  1  summarizes  the  main
nanofabrication technologies used to produce biomimetic
scaffolds for skin TE, along with their pros and cons.

4.1. Electrospinning
Electrospinning produces polymeric nanofibers easily,

adaptably,  and  cheaply  [15,  33].  This  method  easily
creates  densely  linked  networks  of  fibers  ranging  from
100  nm  to  microns  wide,  which  may  be  positioned
arbitrarily [34]. Several parameters affect electrospinning
based  on  the  object's  desired  features  (Fig.  2).  A  high-
voltage electrical current is applied to a polymer solution
to eject an electrostatic polymer jet from a syringe. This
jet crosses a gap and deposits fibers with interconnected
pores  onto  a  collector,  thereby  improving  the  scaffold's
structural  properties  [35].  Operational  parameters,  such
as  polymer  molecular  weight  and  concentration,  solvent
quality,  applied  electrical  voltage,  polymer  flow  rate,
collector-syringe  distance,  and  environmental  conditions
(temperature  and  humidity),  greatly  affect  fiber
morphology [28]. Electrospun nanofibers are widely used
as  wound  dressings  due  to  their  moderate  uptake,
increased  oxygen  permeability,  improved  nutrient  and
metabolite exchange, and ability to transport and release
antimicrobial  agents  [36].  Coaxial  or  emulsion
electrospinning  produces  core-shell  fibers  that
encapsulate  and  regulate  the  release  of  sensitive
therapeutic  substances  like  growth  factors  or  genetic

material [37]. Alginate, hyaluronic acid, and collagen are
mixed  with  synthetic  polymers  like  Polycaprolactone
(PCL),  Poly(lactic-co-glycolic  acid)  (PLGA),  and
polyethylene  terephthalate  to  make  fibers  that  combine
the  mechanical  strength  of  synthetic  materials  with  the
biological  signals  of  natural  proteins  [38].  Electrospun
nanofibrous scaffolds for skin TE and wound healing use
PCL,  PVA,  PHBV,  PEO,  CS,  collagen,  and  Polyurethane
(PU)  as  their  main  polymers  [39].  Thus,  nanofibrous
constructs in skin TE and RM have potential for positive
properties.

4.2. Self-assembly
Self-assembly  is  another  effective  skin  TE  and  RM

approach.  Self-assembly  creates  highly  structured
supramolecular  structures  by  spontaneously  organizing
molecules through non-covalent interactions (Fig. 3) [29].
Innovative nanomolecular devices that interact with living
cells and modulate their biological processes are created
using  this  technology  [40].  Nanotubes,  nanofibers,  and
specialized  carriers  can  be  self-assembled  [41].  This
approach  improves  intracellular  communication  using
biocompatible, biodegradable, and bioactive nanoparticles
and sophisticated hydrogels  [42].  Poor contacts like Van
der  Waals,  hydrophobic,  and  electrostatic  forces  control
self-assembly  [43].  Bipolar  peptides,  especially  Peptide
Amphiphiles (PAs), are a key self-assembly method in soft
TE because they interact with ECM-derived peptides that
influence  cellular  destiny  and  differentiation  [42].  Ionic
solutions  or  pH  changes  can  influence  nanofiber
production.  PAs  can  form  complex  chains  and  boost
angiogenesis,  which  is  necessary  for  dense  tissue
regeneration,  when  combined  with  hyaluronic  acid  or
heparin [26]. Thus, micelles and nanocomposite hydrogels
are essential for targeted drug and gene delivery, thereby
maximizing  the  therapeutic  efficacy  of  encapsulated
agents such as stem cells, growth factors, and antibiotics
for soft tissue injuries and complex cutaneous wounds [44,
45].
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Fig. (2). Schematic illustration of the electrospinning process and summary of key variables influencing the fabrication of nanofibrous
scaffolds.

Fig. (3). Schematic illustration of the self-assembly process and summary of key applications influencing its use in dermatology and skin
disorder treatment.
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Fig.  (4).  Schematic  illustration of  3D bioprinting and summary of  key applications in  skin  tissue engineering (TE)  and regenerative
medicine (RM).

4.3. Skin 3D Bioprinting
Skin  three-dimensional  (3D)  bioprinting  uses

Computer-Aided Design (CAD) to precisely deposit bio-ink
constituents like hydrogels, living cells, and extracellular
matrix  materials  into  a  three-dimensional  configuration
[30]. Its potential for future application in TE and RM is
confirmed  by  numerous  studies,  which  are  based  on  its
substantial  advantages  [34].  Its  use  is  also  tested  in
cutaneous TE and RM (Fig. 4). Inkjet, microextrusion, and
laser-assisted  bioprinting  each  have  different  material
viscosity  tolerance  and  cell  survival  [46].  In  vivo
bioprinting  deposits  cells  and  biomaterials  onto  wounds
and  burns  to  regenerate  functional  skin  [8].  Drug
development and accurate in vitro  tissue models require
this  technology  [47].  Stereolithography  Apparatus  (SLA)
bioprinting  is  used  to  print  complex,  multi-component
tissues  at  high  resolution.  SLA's  strengths  include  high
resolution,  cell  viability,  and  complicated  geometric
shapes,  such  as  high-precision  tissue  scaffolds  with
tailored  porosity  structures  [30].

4.4. Cell-imprinted Substrates
Stem  cells  and  a  proper  microenvironment  allow

regenerative  tissues  like  skin  to  regenerate  [31].  Cell-
imprinted substrates create an optimized, topographically
directed  3D  surface  that  closely  resembles  the  natural
ECM  [32].  This  approach  uses  contact  guiding,  where

substrate  properties  affect  cell  behavior.  Skin
regeneration  uses  stem  cells,  specifically  ADSCs  from
adipose  tissue.  The  imprinted  substrate  can
morphologically  and  biochemically  change  ADSCs  to
mimic the natural  skin microenvironment's  keratinocyte,
elastin, collagen, and soluble factor configurations [48].

5.  NANOMATERIALS  FOR  SKIN:  CLASSIFICATION
AND FUNCTION

The effectiveness of a nanostructured scaffold depends
on the chemical and natural features of the biomaterials it
is  made  of.  Origin  arranges  materials  into  categories,
which  changes  how  strong  they  are,  how  quickly  they
break down, and how they interact with living beings [8,
49].  Skin  TE  requires  a  nanomaterial  that  promotes
cellular  contact,  proliferation,  and  division  while
preserving mechanical homeostasis in vivo. Nanocapsules,
NPs,  Nanofibers  (NFs),  and  nanosheets  [50],  are  widely
employed  on  account  of  their  size-dependent
characteristics [51]. Nanofibers generate a porous ECM-
like membrane with a high surface area-to-volume ratio.
Chemical functionalization and cell-matrix interactions are
improved by this trait [51, 52]. The ideal scaffold design
promotes wound healing by promoting nutrient exchange
and  cell  migration  with  a  target  pore  size  of  80-100  µm
[53]. Table 2 classifies nanomaterials for skin scaffolds by
their characteristics, TE roles, and necessary changes to
overcome mechanical instability and cytotoxicity.
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Table 2. Classification of nanomaterials in skin tissue engineering scaffolds.

Category Examples Key Properties Functional Role in Skin TE Challenges/Modifications
Needed Refs.

Natural
Polymers

Collagen, gelatin,
elastin, fibrin; Chitosan,
HA, alginate, bacterial
cellulose

Biocompatible, bioactive; low
immunogenicity;
antimicrobial/hemostatic
(chitosan); shear-thinning (HA)

ECM mimicry; cell
adhesion/proliferation; wound
remodeling; growth factor
retention

Poor mechanical strength; rapid
enzymatic degradation; requires
cross-linking

[45,
49-55]

Synthetic
Polymers

PCL, PLGA, PLA;
Polyurethane (PU); PVA

Tunable degradation; high
elasticity (PCL/PU); reproducible
mechanics

Structural support; controlled
drug release; skin-like
compliance (PU for dermal
scaffolds)

Hydrophobicity; lack of inherent
bioactivity; needs blending/surface
modification

[34, 47,
56, 57]

Inorganic NPs ZnO, Ag, TiO2, Cu, Fe3O4;
Graphene Oxide (GO)

Antimicrobial/antioxidant; high
surface area; angiogenic (ZnO via
MAPK/Akt); conductive (GO)

Infection control; angiogenesis
promotion; ROS scavenging;
electroactive signaling

Potential cytotoxicity; NP
aggregation; requires controlled
dosing/integration

[58-63]

Hybrid/Blends
Collagen-PCL; Chitosan-
PVA; Gelatin-HA
nanocomposites;
Curcumin-PCL/PVA

Combines bioactivity/mechanics;
enhanced hydrophilicity;
sustained release

Multifunctional scaffolds;
VEGF/drug delivery; balanced
durability and signaling

Ratio optimization for
biocompatibility; stability in vivo;
fabrication complexity

[52, 64]

5.1. Natural and Bioactive Nanostructured Polymers
The  biocompatibility,  minimal  immunogenicity,  and

inherent  bioactivity  of  natural  polymers  make  them
valuable in skin TE. These features allow them to replicate
the  natural  ECM's  structure  and  signaling  [54].  Many
polymers  have  binding  sites  and  signaling  patterns  that
promote  cell  adhesion,  migration,  and  growth  factor
retention  [55].  ECM-derived  parts:  Bio-signals  from
collagen,  gelatin,  elastin,  and  fibrin  help  cells  adhere,
proliferate, and differentiate [50]. Denatured collagen and
gelatin  have  enhanced  solubility  but  require  chemical
cross-linking  to  increase  mechanical  strength  and  slow
enzymatic  breakdown  [56].  Chitosan,  HA,  alginate,  and
bacterial cellulose are common polysaccharides in TE [52,
57].  Chitosan's  intrinsic  antibacterial,  hemostatic,  and
anti-inflammatory characteristics make it ideal for wound
dressings [58]. Polysaccharide nanofibers enhance tissue
remodeling and absorption [59]. HA-based hydrogels are
popular  injectable  bioinks  because  they  shear-thin  and
control  fibroblast  behavior  [60].

5.2.  Synthetic  and  Mechanically  Tunable
Nanostructured Polymers

Mechanical tunability, exact repeatability, and highly
controllable  degradation  profiles  are  improved  by
synthetic  polymers,  overcoming  natural  materials'
mechanical  strength  constraints  [38].  They  are  typically
engineered to offer the necessary temporary mechanical
support  during  the  regeneration  phase.  Biodegradable
polyesters,  such  as  PCL,  PLGA,  and  Poly  (Lactic  Acid)
(PLA),  are  among  the  most  widely  used  polyesters  [52].
PCL  is  ideal  for  long-term  applications  due  to  its  high
elasticity and degradation duration. PLGA allows precise
control  of  the  degradation  rate,  which  is  important  for
controlled medication administration [61]. These materials
need  their  surfaces  modified  or  mixed  with  natural
polymers  because  they  are  hydrophobic  and  lack
biological  activity.  People  like  PU  because  it  is  very
flexible and has mechanical properties that are similar to
human skin. Due to this, PU is necessary for elastic, high-
compliance dermal scaffolds [62].

5.3. Inorganic and Functional Nanoparticles
Nanoparticles  (NPs)  possess  a  minimum  diameter  of

one  nanometer  [63].  Nanostructures  are  interesting  for
tissue regeneration, monitoring, and diagnosis because of
their distinctive chemical and physical characteristics and
quantum  size  effects  [63].  To  have  antibacterial,
angiogenic,  and  antioxidant  properties,  the  polymeric
scaffold  backbone  required  inorganic  nanoparticles  and
composite components [64]. Antimicrobial and antioxidant
substances:  Scaffold  architectures  include  a  number  of
NPs,  such  as  Zinc  Oxide  (ZnO),  Silver  (Ag),  Titanium
Dioxide (TiO2), Copper (Cu), and Iron Oxide (Fe3O4) [65].
Silver  or  nanosilver  and  iron  oxide  NPs  in  fibers  form
bespoke  dressings  with  powerful  antioxidant  and
antibacterial  capabilities  that  inhibit  Gram-positive  and
Gram-negative bacteria [66].

5.4. Angiogenic and Conductive Promoters
Some  inorganic  nanomaterials  directly  affect  tissue

healing [67]. Zinc Oxide Nanoparticles (ZnONPs) increase
endothelial cell migration and blood vessel formation via
MAPK/Akt/eNOS  [68].  Graphene  Oxide  (GO)  and  other
carbon-based  nanomaterials  increase  scaffold  electrical
conductivity,  which  stimulates  electrically  sensitive
biological  signaling  pathways  [69].  Innovative  hybrid
nanocomposites,  including  Type  I  collagen/TiO2-PVP
composites, combine natural polymers' biological qualities
with  synthetic  or  inorganic  components'  mechanical
strength [57]. This combination strikes a balance between
mechanical  endurance  and  cellular  communication
endurance.  Bioactive compounds,  such as curcumin,  can
destroy bacteria, pus, and debris in the wound bed when
applied  to  composite  scaffolds  such  as  Polyvinyl  Alcohol
(PVA)  or  Polycaprolactone  (PCL).  This  speeds  up  the
disinfection  and  rehabilitation  of  the  wound  [70].

6. CLINICAL AND THERAPEUTIC APPLICATIONS OF
NANO-ENGINEERED SCAFFOLDS

The  primary  goal  of  developing  nanostructured
scaffolds  is  to  convert  their  improved  biomimetic  and
functional  properties  into  real  clinical  benefits  for  skin
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repair  and  regeneration.  Nanotechnology  has  shown
significant  effectiveness  in  various  therapeutic  areas,
particularly  in  the  intricate  management  of  chronic
wounds  and  advanced  aesthetic  anti-aging  treatments
[71].

6.1. Accelerated Wound Healing
Trauma, burns, chronic problems (such as diabetic or

venous  ulcers),  or  disorders  that  damage  the  skin's
integrity  make  treatment  very  difficult  [51].  The  goal  of
skin  engineering  and  regeneration  therapy  is  to  make
structures that look and work like the ECM in the dermis
and epidermis [72]. This method gives the right biological
signals  to  let  native  cells  grow,  move,  and  change  in  a
regulated  way  [50].  However,  due  to  the  intricate
physiopathological  characteristics  of  the  wounds,
particularly  in  the  case  of  a  chronic  wound,  additional
therapeutic  factors  become  significant.  For  example,
immunomodulatory  and  anti-inflammatory  drugs  have  a
big effect on how chronic wounds heal [73]. Consequently,
the  ideal  nanoconstruct  can  concurrently  serve  as  a
medication  and  cell  delivery  mechanism.  Nonetheless,
data  underscores  that  mesenchymal  stem  cells  exhibit
anti-inflammatory  and  immunomodulatory  properties  in
both  in  vitro  and  in  vivo  settings  [74-77].  In  contrast,
infection and antibiotic use are crucial in the management
of wounds, especially chronic ones. Consequently, in the
pursuit of an optimal nanoconstruct for wound healing, it
is essential to evaluate the requisite characteristics for the
delivery  of  portions,  such  as  anti-inflammatory  drugs,
antibiotics,  and  organic  substances  with  comparable
effects, alongside the simultaneous administration of cells
such  as  mesenchymal  stem  cells  and  keratinocytes  [20,
75].

6.1.1. The Nanotechnology Solutions in Wound Care
Nanotechnology-based  therapies,  including

nanoparticles and nanofibrous scaffolds, can significantly
enhance wound healing.  These sophisticated nano-based
solutions  have  shown  promising  results  in  promoting
tissue regeneration and mitigating inflammation [78, 79].
They  can  also  help  with  wound  healing  by  reducing

scarring and speeding up the process. Table 3 shows how
nano-engineered scaffolds can be used for wound healing
and anti-aging treatments, as well as how they work and
what therapeutic benefits they have.

Nano-engineered scaffolds offer a superior therapeutic
platform  compared  to  traditional  grafts  [80].  Their
effectiveness  arises  from  several  essential  mechanisms:

6.1.1.1. ECM Mimicry and Cellular Response
Scaffolds  engineered  with  precise  mechanical

characteristics  and  ideal  pore  dimensions  (80–100  μm)
provide  effective  cell  adhesion,  proliferation,  and
infiltration,  essential  for  skin  regeneration  [88].  Three-
dimensional  electrospun  nanofibers  improve  cell
penetration and growth, which are important for repairing
deep  tissue  [89].  To  reduce  negative  reactions  and
improve  cellular  function,  the  scaffold's  mechanical
properties  (such  as  strength,  modulus,  and  viscoelastic
creep) must also be carefully matched to the host tissue
[90].

6.1.1.2. Particular Delivery of Therapies
Nanomaterials  are  employed  as  sustained-release

systems  to  enhance  rehabilitation  effects  [91],  which
encompass:

Encapsulation  of  Growth  Factors:  For  instance,  VEGF-
loaded chitosan/PEO nanofibers or PDGF-BB-loaded PLGA
nanoparticles embedded in nanofibers are developed for
the  sustained  release  of  growth  factors,  leading  to
prolonged  therapeutic  effects  [92].
Active Compounds: Curcumin, a bioactive agent, may be
incorporated to assist in the removal of germs, pus, and
debris  from  the  wound  bed  [93].  Moreover,  arginine-
infused scaffolds have demonstrated beneficial effects on
cellular migration and proliferation [94].
Gene and MicroRNA Delivery: Sophisticated nanocarriers
like liposomes and dendrimers safeguard delicate nucleic
acids  (e.g.,  antisense  oligonucleotides)  from  enzymatic
degradation,  facilitating  their  controlled  release  to
regulate  gene  expression  in  the  wound  milieu  [95].

Table 3. Nanotechnology solutions in wound healing and anti-aging.

Application
Area Key Mechanisms Nano-Engineered

Examples Outcomes/Benefits Clinical
Challenges Refs.

Wound Healing
ECM mimicry (80–100 μm
pores); sustained growth factor
release (VEGF/PDGF);
antimicrobial action

VEGF-loaded chitosan/PEO
NFs; ZnO-PCL fibers;
Curcumin-collagen composites

Accelerated closure/re-
epithelialization; enhanced
angiogenesis; reduced infection

Scalability; in vivo
stability; mechanical
matching to host
tissue

[50, 74,
80]

Anti-Infective
Therapy

ROS disruption/ion release (Ag+,
Zn2+); anti-inflammatory (TGF-β
modulation)

Ag NPs in gelatin-PVA mats;
Fe3O4-PCL-gelatin membranes

Gram+/− bacterial inhibition;
inflammation reduction; non-
dehydrating disinfection

Resistance
emergence; NP
toxicity dosing;
aggregation

[81-83]

Anti-Aging
ROS scavenging;
collagen/elastin remodeling;
nanocarrier penetration
(liposomes/NLCs)

Bioflavonoid nanocrystals; Au
NPs-alpha-lipoic acid; Vitamin
C/retinoid NLCs

Wrinkle reduction; fibroblast
proliferation; dermal
thickening/antioxidant effects

UV/extrinsic aging
efficacy; deep
penetration;
cytotoxicity

[84, 85]

Hybrid Scaffolds
for Burns

Angiogenesis (CeO2); scarless
healing; stimulus-responsive
release/oxygen generation

ZnO-Curcumin collagen
hybrids; Ge/SA/CNC scaffolds

Scar-free remodeling; improved
absorption/mechanics;
neovascularization

Donor morbidity;
vascular delays; smart
system accuracy

[86, 87]



Nanobiomaterials for Skin Tissue Engineering and Regenerative Medicine 9

6.1.1.3. Antimicrobial Efficacy
Nanoscaffolds possess intrinsic antibacterial and anti-

inflammatory  characteristics,  typically  realized  by  the
integration of  nanoparticles  such as silver  or  zinc oxide.
This facilitates efficient cleaning and the control of chronic
inflammation without desiccating the wound bed [81]. ZnO
nanoparticles (ZnONPs) incorporated into polymeric fibers
markedly  enhance  cell  adhesion  and  fibroblast
proliferation,  thereby  expediting  the  wound-healing
process  [82].

Enhanced  Functionality:  Employing  materials  that
generate oxygen, such as sodium percarbonate or calcium
peroxide,  and  sending  them  through  microchannels,  is
among  the  new  ideas.  These  materials  have  shown
significant  benefits  for  reepithelialization,  neovasculari-
zation, and collagen remodeling [96]. The latest innovative
development  entails  the  creation  of  intelligent  stimulus-
responsive  nanosystems  that  allow  wound  dressings  to
identify  infection  biomarkers  and  accurately  deliver  the
necessary medicinal drug as needed, advancing closer to
genuine individualized wound care [97].

6.2. Targeted Drug and Gene Delivery Systems
Nanomaterials have changed how drugs are delivered

in dermatology and wound care by making it  possible to
release  active  substances  in  a  targeted  and  controlled
way.  This  advancement  tackles  the  issues  of  inadequate
solubility  and  systemic  toxicity  frequently  linked  with
traditional  therapies.  Nanocarrier  Design:  New  types  of
nanocarriers,  such  as  liposomes,  nanoemulsions,  Solid
Lipid  Nanocarriers  (SLNs),  and  Nanostructured  Lipid
Carriers  (NLCs)  [98],  make  it  easier  for  medicinal
chemicals  to  cross  the  skin  and  enter  the  body.  For
instance,  intricate  systems  like  gelatin/hyaluronic  acid
scaffolds  that  utilize  atorvastatin-loaded  NLCs  demons-
trate  potential  for  cohesive  drug  delivery  within
regenerative  scaffolds  [99].  This  unique  nanodelivery
technology  is  especially  helpful  because  it  makes  poorly
water-soluble medications more bioavailable and prevents
bioactive  compounds  from breaking  down  in  situ  due  to
enzymes or changes in pH [21].

Improving  cell  treatment:  NPs  are  being  used  more
and  more  with  cell  treatment  to  help  cells  stay  alive,
survive, and secrete angiogenic factors in a specific area
[100].  NPs  and  cell  treatment  are  often  combined  to
enhance  the  release  of  angiogenic  factors  [100].  For
example,  CeO2-NPs added to polymeric scaffolds can act
as  beneficial  angiogenic  structures,  accelerating  blood
vessel  growth  in  TE  [101].  Gold  nanoparticles,  for
example,  can  carry  chemicals  like  alpha-lipoic  acid  that
help  control  inflammation  and  the  growth  of  new  blood
vessels [102].

6.3. Anti-aging Methods and Dermal Regeneration
Intrinsic  and extrinsic  factors  both  cause skin  aging,

which  is  characterized  by  decreased  collagen levels  and
reduced interstitial water content [8]. A major part of this
procedure  is  UV  light,  which  makes  damaging  Reactive
Oxygen  Species  (ROS)  [84].  Nanomaterials  are  very

important for developing new anti-aging methods, as they
have unique surface chemistry and are highly reactive.

1. Antioxidant Properties: Nanomaterials are effective
at  picking  up  ROS  [103].  Nanocrystals  derived  from
bioflavonoids,  natural  polyphenolic  chemicals,  can  be
synthesized  using  top-down  or  bottom-up  approaches.

These  nanocrystals  are  particularly  effective  at
penetrating  the  epidermis  and  exhibit  several
pharmacological  actions,  including  antioxidant,  anti-
inflammatory,  and  anti-aging  effects  [104].

2.  ECM  Support  and  Reconstruction:  Nanofibrous
structures  give  structural  support  and  signaling  signals
that help the body make collagen and elastin again. This
procedure  is  crucial  for  making  the  dermis  thicker  and
making  wrinkles  less  noticeable  [105].  This  application
relies  heavily  on  new  nanocarriers,  such  as  liposomes,
nanoemulsions, and NLCs, which help deliver active anti-
aging drugs deeper into the skin [8, 98].

3.  Improved  Delivery:  Nanocarriers  help
cosmeceuticals like vitamin C and retinoids reach deeper
into  the  skin  by  targeting  them  more  effectively.  This
makes  them  much  more  effective  than  regular  topical
preparations  [106].  Using  these  nanocarriers  makes  it
easier  for  drugs  to  go  into  damaged  or  old  skin  layers
while also lowering the risk of medication toxicity [107].

7. CHALLENGES AND FUTURE DIRECTIONS
Despite  substantial  advances,  numerous  pivotal

obstacles hinder the integration of these discoveries into
widespread clinical applications:

1.  Complexity  of  Models:  Current  3D in  vitro  models
still have trouble adequately mimicking the skin's complex
structure and different layers [51].

2. Availability and Individualization: Making scaffolds
that  are  very  accurate  for  each  patient,  as  well  as  the
difficulties of increasing production for widespread clinical
utilization, are major engineering issues [98].

3.  Directive  Framework:  There is  an urgent  need for
clear and defined rules for complicated nanocomposites to
make it easier for them to be used in clinical settings.

The  future  of  skin  regeneration  medicine  is  moving
toward smart nanosystems that respond to stimuli, which
are commonly called “innovative dressings.” These high-
tech  gadgets  will  be  able  to  keep  an  eye  on  the  wound
environment in real time, such as pH levels and infection
indicators, and they will be capable of starting the exact
release of medicines on their own. This is the next step in
individualized  and  very  effective  skin  rejuvenation  and
repair.  Additionally,  creating  scaffolds  that  actively
improve  stem  cell  preservation,  persistence,  and
differentiation in situ is a fantastic way to achieve full and
functional skin regeneration.

CONCLUSION AND FUTURE OUTLOOK
Nanotechnology  has  changed  the  field  of  skin

regeneration  medicine  in  a  big  way.  This  advancement
addresses  critical  clinical  challenges  associated  with
traditional skin grafting, such as donor site morbidity and
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immunological rejection [6]. This study stresses that nano-
engineered  scaffolds  are  a  big  part  of  this  change  since
they  can  look  and  work  like  the  native  ECM  at  the
nanoscale.  Electrospinning,  3D  bioprinting,  and  self-
assembly  are  all  advanced nanofabrication methods that
let  you  make  scaffolds  with  excessive  surface  area-to-
volume  ratios,  regulated  porosity,  and  customizable
mechanical  properties  [8,  108].  To  make  efficient
regenerative  constructs,  it  is  important  to  use  natural
nanostructured polymers (like collagen and chitosan) for
their natural bioactivity, synthetic polymers (like PCL and
PLGA)  for  their  mechanical  flexibility,  and  inorganic
nanoparticles  (like  AgNPs  and  ZnONPs)  for  their  strong
antimicrobial and angiogenic properties [109]. There are
several  clinical  uses  for  these  nano-engineered  systems.
They  are  better  at  speeding  up  wound  healing  because
they  improve  cell  adhesion,  control  inflammation,  and
deliver therapeutic substances (such as growth factors or
antibiotics)  over  time  [74,  110].  Nanocarriers  are  also
becoming  more  essential  in  anti-aging  treatments.  They
help transport antioxidants deep into the skin, where they
can  help  repair  damage  caused  by  toxic  substances  and
promote skin remodeling. Therefore, this new area needs
further  investigation,  and  multiple  studies  are  already
underway.
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