The Open Dermatology Journal ISSN: 1874-3722
DOI: 10.2174/0118743722461284260209104738, 2026, 20, e18743722461284 1

REVIEW ARTICLE OPEN ACCESS

Nanobiomaterials for Skin Tissue Engineering and
Regenerative Medicine: From Mechanistic Under-
standing to Clinical Translation

Ali Golchin", Sanaz Sadigh’, Sima Jafari’, Hana Ranjbari’, Maryam Rahnama', Navid
Ghasemzadeh’, Aynaz Mihanfar’, Forough Shams’ and Ali Mohammad Amani’

IRegenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran,
Iran

*Department of Clinical Pathology and Internal Medicine, Faculty of Veterinary Medicine, Urmia University, Urmia,
Iran

’Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran

‘Faculty of Dentistry, Urmia University of Medical Science, Urmia, Iran

°Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran

°School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
"Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University
of Medical Sciences, Shiraz, Iran

Abstract:

Cell- and tissue-based therapy, as the main subfields of regenerative medicine, are critical interdisciplinary fields that
are anticipated to constitute a significant portion of future medicine. To design and develop more effective cell- and
tissue-based therapies for a diverse array of medical uses, particularly in the fields of skin tissue engineering and
regenerative medicine, nanotechnology, biomaterial sciences, stem cell biology, and biomedical engineering,
researchers are collaborating. Recently, the emergence of nanotechnology has revolutionized the landscape of skin
tissue engineering and regenerative medicine by enabling the development of advanced nanobiomaterials and
nanostructures with unparalleled functional and engineering properties. This narrative review aims to investigate the
various applications of nanotechnology-based knowledge in cell- and tissue-based therapies for skin regeneration and
dermatological practices. This study addresses the effects of nanotechnology-based approaches on biological
responses, cell behavior, tissue integration, and the functional recovery of biological structures. Furthermore, the
study highlights the promise of combining nanobiomaterials with cell engineering approaches to advance therapeutic
outcomes in skin repair. According to a literature review, nanobiomaterials that are both effective and supportive can
help produce structures resembling natural biological ones, alter the extracellular matrix, and direct stem cell fates.
Nevertheless, the aim of the study is to encourage additional research and innovation, thereby establishing the
foundation for the development of next-generation regenerative therapies for skin conditions and dermatology.
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1. INTRODUCTION

The skin is one of the most important and vital
structures in the body, making up about 16% of an adult's
total body weight. Any damage to the skin's structure can
have catastrophic effects, including injury, recuperation,
long-term problems, and even mortality [1]. Skin is the
most important link between a multicellular organism and
its environment. It is made up of many layers, including
the epidermis (which protects against water), the dermis
(which gives the skin strength and elasticity), and the
hypodermis (which lies beneath the dermis) [2, 3]. The
skin is important for more than just its physical makeup. It
also helps keep the body at a functional temperature,
prevents dehydration, and protects against several outside
hazards, such as mechanical, chemical, thermal, and
pathogenic agents, and UV exposure [4]. However,
constant contact makes skin tissue prone to harm, which
can lead to serious medical problems, from hospitalization
to life-threatening infections [5]. Traditional therapeutic
approaches, including autologous skin grafts, have
considerable clinical constraints, such as donor site
mortality, limited accessibility for severe burns, and often
suboptimal cosmetic and functional outcomes [6].
Moreover, allogeneic transplantation carries a risk of
immunological failure. Consequently, the pressing
necessity to completely regenerate functioning skin tissue
has driven progress in skin Tissue Engineering (TE) and
Regenerative Medicine (RM) [7-9]. This multidisciplinary
field integrates medicine, biology, materials science, and
engineering principles to create effective biological
replacements designed to restore, preserve, or augment
the performance of damaged tissues, thereby proving their
significance in the management of severe dermatological
conditions [8, 9]. The “tissue engineering triad,” which
includes cells, biologically active signaling molecules, and
a supportive, flexible scaffold, is the cornerstone of TE
[10, 11]. The scaffold is likely the most essential element,
as it must physically and physiologically replicate the
natural Extracellular Matrix (ECM). However, the ECM is
a dynamic network that offers mechanical durability,
biochemical signals, and a structural framework crucial
for governing cell adhesion, migration, proliferation,
differentiation, and tissue remodeling [12, 13]. The goal of
contemporary TE is to obtain superior results through the
utilization of cutting-edge  nanotechnology-based
approaches [14]. Techniques that enable the accurate
manufacturing of materials at the nanoscale (1-100 nm)
can be used to create scaffolds that closely mimic the
fibrous architecture, high porosity, and surface-area-to-
volume ratio of the native extracellular matrix (ECM) [15].
This results in a significant improvement in the
communication between cells and the matrix, as well as
the possibility of regeneration [16, 17]. Therefore, in
addition to  well-mimicked scaffold fabrication,
nanotechnology-based knowledge can improve stem cell
research by enhancing their survival and functionality.
However, different cell types from different sources can be
used for TE and RG purposes. Stem cells, including
embryonic stem cells, induced pluripotent stem cells, and
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mesenchymal stem cells, as well as differentiated cells,
such as keratinocytes and fibroblasts, are high-potency
cell sources available for use in skin TE and RM [7, 18-20].
This review paper comprehensively reviews and critically
evaluates recent advancements in nanotechnology-driven
approaches for skin TE. Recent advancements in
biomimetic nanostructured scaffolds are examined, the
most efficient nanofabrication methods (including
electrospinning and 3D bioprinting) are outlined, and the
use of diverse nanomaterials (natural, synthetic, and
hybrid) in enhancing wound healing and implementing
anti-aging strategies is analyzed. The existing limitations
and future prospects for the therapeutic implementation of
these revolutionary nano-engineered skin substitutes are
emphasized.

2. SEARCH STRATEGY

A non-systematic search was performed across
PubMed, Scopus, Web of Science, and Google Scholar to
establish the foundational basis for this narrative review.
The terms used were “nanobiomaterials,” “nanomaterials,”
“skin tissue engineering,” “regenerative medicine,”
“nanofibers,” “electrospinning,” “3D bioprinting,” “wound
healing,” and “nanoparticles.” The sources were chosen
because they were relevant to the use of nanotechnology
in skin regeneration, focusing on recent developments and
the medical uses of the technology.

3. NANOTECHNOLOGY IN SKIN REGENERATIVE
MEDICINE: PRINCIPLES AND BIOMIMICRY

Nanotechnology is an extensive area that includes
many areas of science, from molecular biology to research
on improved materials. The main goal is to create,
manipulate, and control materials at the nanoscale with
great precision to achieve better or new functions [21].
The effective integration of nanotechnology has radically
altered RM, particularly in TE and pharmaceutical delivery
systems [22]. The overall benefit has mostly come from
combining nanoscale materials with multifunctional
polymers to make pharmaceutical designs and target
tissues far more effective and biocompatible [22]. All
native tissues exhibit unique structural attributes at the
nanoscale, and it has been conclusively established that
the integration of nano-topographies onto biomaterial
surfaces significantly enhances the functionality, affinity,
and accessibility of various cell types. People often call the
materials made this way “bio-nanomaterials” [23].
Nanotechnology expansion efforts generally focus on two
strategic methodologies: modifying the chemical structure
of a material or altering its physical characteristics,
including visual shape, an enhanced surface area-to-
volume ratio, or mechanical characteristics such as
improved tensile strength, hardness, and Young's modulus
[24]. These unique characteristics allow for the exact
modification of biomaterials by changing chemical and
biological factors to improve positive cellular connections
and physical signaling capabilities [21]. Although the skin
is the largest organ and serves as the principal
physiological protection, it is perpetually subjected to
injury [25]. Nanotechnology facilitates the fabrication of
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nanomaterials and nanoconstructs, which are pivotal in conduit to enhance and expedite advancements in skin
developing an effective therapy method based on TE and regeneration, wound healing, and anti-aging strategies.
RM (Fig. 1). Nanoscience thus offers a vital technical

Nanotechnology in Skin Regenerative Medicine
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Fig. (1). Applications of nanotechnology in skin RM. (A) Compounds used in skin regeneration are categorized based on their origin into
natural nanostructured polymers, synthetic nanostructured polymers, and inorganic nanoparticles, which can function as scaffolds or
nanocarriers. (B) Nanomaterials enhance skin regeneration through various approaches, including the use of implantable scaffolds
fabricated by 3D bioprinting or electrospinning, as well as nanocarriers designed to deliver active therapeutic agents to injured skin.
Utilization of nanotechnology in skin regenerative medicine. Substances employed in skin regeneration are classified by their origin into
natural nanostructured polymers, synthetic nanostructured polymers, and inorganic nanoparticles, which serve as scaffolds or
nanocarriers. Nanomaterials facilitate skin regeneration using multiple methods, including implantable scaffolds created via 3D
bioprinting or electrospinning and nanocarriers engineered to transport effective medicinal medicines to damaged skin.
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Table 1. Comparison of key nanofabrication techniques for skin scaffolds.
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behavior promotes adhesion/migration fabrication complexity keratinocyte cues

4. ADVANCED NANOFABRICATION TECHNIQUES
FOR SKIN SCAFFOLDS

Creative strategies are used to create advanced
nanoscale scaffolds for imitating the natural ECM.
Electrospinning, self-assembling, 3D bioprinting, and cell-
imprinting are the main nanostructured platform
production methods [26]. Microfluidics and 'organ-on-
chips' models provide dynamic, high-throughput
assessment of synthetic skin replacements, providing a
more precise physiological backdrop for preclinical
evaluation [27]. Table 1 summarizes the main
nanofabrication technologies used to produce biomimetic
scaffolds for skin TE, along with their pros and cons.

4.1. Electrospinning

Electrospinning produces polymeric nanofibers easily,
adaptably, and cheaply [15, 33]. This method easily
creates densely linked networks of fibers ranging from
100 nm to microns wide, which may be positioned
arbitrarily [34]. Several parameters affect electrospinning
based on the object's desired features (Fig. 2). A high-
voltage electrical current is applied to a polymer solution
to eject an electrostatic polymer jet from a syringe. This
jet crosses a gap and deposits fibers with interconnected
pores onto a collector, thereby improving the scaffold's
structural properties [35]. Operational parameters, such
as polymer molecular weight and concentration, solvent
quality, applied electrical voltage, polymer flow rate,
collector-syringe distance, and environmental conditions
(temperature and humidity), greatly affect fiber
morphology [28]. Electrospun nanofibers are widely used
as wound dressings due to their moderate uptake,
increased oxygen permeability, improved nutrient and
metabolite exchange, and ability to transport and release
antimicrobial agents [36]. Coaxial or emulsion
electrospinning  produces core-shell fibers that
encapsulate and regulate the release of sensitive
therapeutic substances like growth factors or genetic

material [37]. Alginate, hyaluronic acid, and collagen are
mixed with synthetic polymers like Polycaprolactone
(PCL), Poly(lactic-co-glycolic acid) (PLGA), and
polyethylene terephthalate to make fibers that combine
the mechanical strength of synthetic materials with the
biological signals of natural proteins [38]. Electrospun
nanofibrous scaffolds for skin TE and wound healing use
PCL, PVA, PHBV, PEO, CS, collagen, and Polyurethane
(PU) as their main polymers [39]. Thus, nanofibrous
constructs in skin TE and RM have potential for positive
properties.

4.2. Self-assembly

Self-assembly is another effective skin TE and RM
approach. Self-assembly creates highly structured
supramolecular structures by spontaneously organizing
molecules through non-covalent interactions (Fig. 3) [29].
Innovative nanomolecular devices that interact with living
cells and modulate their biological processes are created
using this technology [40]. Nanotubes, nanofibers, and
specialized carriers can be self-assembled [41]. This
approach improves intracellular communication using
biocompatible, biodegradable, and bioactive nanoparticles
and sophisticated hydrogels [42]. Poor contacts like Van
der Waals, hydrophobic, and electrostatic forces control
self-assembly [43]. Bipolar peptides, especially Peptide
Amphiphiles (PAs), are a key self-assembly method in soft
TE because they interact with ECM-derived peptides that
influence cellular destiny and differentiation [42]. Ionic
solutions or pH changes can influence nanofiber
production. PAs can form complex chains and boost
angiogenesis, which is necessary for dense tissue
regeneration, when combined with hyaluronic acid or
heparin [26]. Thus, micelles and nanocomposite hydrogels
are essential for targeted drug and gene delivery, thereby
maximizing the therapeutic efficacy of encapsulated
agents such as stem cells, growth factors, and antibiotics
for soft tissue injuries and complex cutaneous wounds [44,
45].
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Fig. (2). Schematic illustration of the electrospinning process and summary of key variables influencing the fabrication of nanofibrous
scaffolds.

Key applications and approaches include:

e Photopolymerization of Multifunctional Monomers

¢ Engineered Biomaterials

¢ Self-Assembled Nanomaterials for Infected Wounds
¢ Collagen-Based Biomaterials

e Supramolecular Polymers for Burn Injury

¢ Topologically Aligned Hydrogels

e Enzyme-Triggered Self-Assembling Peptides

e Supramolecular Hydrogels from Small Molecules
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Fig. (3). Schematic illustration of the self-assembly process and summary of key applications influencing its use in dermatology and skin
disorder treatment.
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Fig. (4). Schematic illustration of 3D bioprinting and summary of key applications in skin tissue engineering (TE) and regenerative

medicine (RM).

4.3. Skin 3D Bioprinting

Skin three-dimensional (3D) bioprinting uses
Computer-Aided Design (CAD) to precisely deposit bio-ink
constituents like hydrogels, living cells, and extracellular
matrix materials into a three-dimensional configuration
[30]. Its potential for future application in TE and RM is
confirmed by numerous studies, which are based on its
substantial advantages [34]. Its use is also tested in
cutaneous TE and RM (Fig. 4). Inkjet, microextrusion, and
laser-assisted bioprinting each have different material
viscosity tolerance and cell survival [46]. In vivo
bioprinting deposits cells and biomaterials onto wounds
and burns to regenerate functional skin [8]. Drug
development and accurate in vitro tissue models require
this technology [47]. Stereolithography Apparatus (SLA)
bioprinting is used to print complex, multi-component
tissues at high resolution. SLA's strengths include high
resolution, cell viability, and complicated geometric
shapes, such as high-precision tissue scaffolds with
tailored porosity structures [30].

4.4. Cell-imprinted Substrates

Stem cells and a proper microenvironment allow
regenerative tissues like skin to regenerate [31]. Cell-
imprinted substrates create an optimized, topographically
directed 3D surface that closely resembles the natural
ECM [32]. This approach uses contact guiding, where

substrate properties affect cell behavior. Skin
regeneration uses stem cells, specifically ADSCs from
adipose tissue. The imprinted substrate can
morphologically and biochemically change ADSCs to
mimic the natural skin microenvironment's keratinocyte,
elastin, collagen, and soluble factor configurations [48].

5. NANOMATERIALS FOR SKIN: CLASSIFICATION
AND FUNCTION

The effectiveness of a nanostructured scaffold depends
on the chemical and natural features of the biomaterials it
is made of. Origin arranges materials into categories,
which changes how strong they are, how quickly they
break down, and how they interact with living beings [8,
49]. Skin TE requires a nanomaterial that promotes
cellular contact, proliferation, and division while
preserving mechanical homeostasis in vivo. Nanocapsules,
NPs, Nanofibers (NFs), and nanosheets [50], are widely
employed on account of their size-dependent
characteristics [51]. Nanofibers generate a porous ECM-
like membrane with a high surface area-to-volume ratio.
Chemical functionalization and cell-matrix interactions are
improved by this trait [51, 52]. The ideal scaffold design
promotes wound healing by promoting nutrient exchange
and cell migration with a target pore size of 80-100 pm
[53]. Table 2 classifies nanomaterials for skin scaffolds by
their characteristics, TE roles, and necessary changes to
overcome mechanical instability and cytotoxicity.
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Table 2. Classification of nanomaterials in skin tissue engineering scaffolds.
Category Examples Key Properties Functional Role in Skin TE Challeng;sélf\}/fl(::;flcatlons Refs.
Collagen, gelatin, Biocompatible, bioactive; low ECM mimicry; cell Poor mechanical strength: rapid
Natural elastin, fibrin; Chitosan, |immunogenicity; adhesion/proliferation; wound enzymatic deara dation?’ rel ui?"es [45,
Polymers HA, alginate, bacterial |antimicrobial/hemostatic remodeling; growth factor crozs-linkin g i req 49-55]
cellulose (chitosan); shear-thinning (HA) retention g
C Structural support; controlled . .
netc(pcL puoa Ly (Tl deorton gk g ol sine - [Sophobiety sk onberent o 7,
Polymers Polyurethane (PU); PVA ? i rep compliance (PU for dermal CLVILY; g 56, 571
mechanics scaffolds) modification
700, Aq. TiO,. Cu, Fe.O,; Antimicrobial/antioxidant; high Infection control; angiogenesis |Potential cytotoxicity; NP
Inorganic NPs G ’h 9 0 Z',d (60)3 ¥ |surface area; angiogenic (ZnO via |promotion; ROS scavenging; |aggregation; requires controlled [58-63]
raphene Uxide MAPK/AKkt); conductive (GO) electroactive signaling dosing/integration
g{;ﬁ?%ﬁﬁg_‘ﬁghltosan‘ Combines bioactivity/mechanics; |Multifunctional scaffolds; Ratio optimization for
Hybrid/Blends nam;com osites: enhanced hydrophilicity; VEGF/drug delivery; balanced [biocompatibility; stability in vivo; [52, 64]
CurcumirI1)-PCL /I;V A sustained release durability and signaling fabrication complexity

5.1. Natural and Bioactive Nanostructured Polymers

The biocompatibility, minimal immunogenicity, and
inherent bioactivity of natural polymers make them
valuable in skin TE. These features allow them to replicate
the natural ECM's structure and signaling [54]. Many
polymers have binding sites and signaling patterns that
promote cell adhesion, migration, and growth factor
retention [55]. ECM-derived parts: Bio-signals from
collagen, gelatin, elastin, and fibrin help cells adhere,
proliferate, and differentiate [50]. Denatured collagen and
gelatin have enhanced solubility but require chemical
cross-linking to increase mechanical strength and slow
enzymatic breakdown [56]. Chitosan, HA, alginate, and
bacterial cellulose are common polysaccharides in TE [52,
57]. Chitosan's intrinsic antibacterial, hemostatic, and
anti-inflammatory characteristics make it ideal for wound
dressings [58]. Polysaccharide nanofibers enhance tissue
remodeling and absorption [59]. HA-based hydrogels are
popular injectable bioinks because they shear-thin and
control fibroblast behavior [60].

5.2. Synthetic and
Nanostructured Polymers

Mechanically Tunable

Mechanical tunability, exact repeatability, and highly
controllable degradation profiles are improved by
synthetic polymers, overcoming natural materials'
mechanical strength constraints [38]. They are typically
engineered to offer the necessary temporary mechanical
support during the regeneration phase. Biodegradable
polyesters, such as PCL, PLGA, and Poly (Lactic Acid)
(PLA), are among the most widely used polyesters [52].
PCL is ideal for long-term applications due to its high
elasticity and degradation duration. PLGA allows precise
control of the degradation rate, which is important for
controlled medication administration [61]. These materials
need their surfaces modified or mixed with natural
polymers because they are hydrophobic and lack
biological activity. People like PU because it is very
flexible and has mechanical properties that are similar to
human skin. Due to this, PU is necessary for elastic, high-
compliance dermal scaffolds [62].

5.3. Inorganic and Functional Nanoparticles

Nanoparticles (NPs) possess a minimum diameter of
one nanometer [63]. Nanostructures are interesting for
tissue regeneration, monitoring, and diagnosis because of
their distinctive chemical and physical characteristics and
quantum size effects [63]. To have antibacterial,
angiogenic, and antioxidant properties, the polymeric
scaffold backbone required inorganic nanoparticles and
composite components [64]. Antimicrobial and antioxidant
substances: Scaffold architectures include a number of
NPs, such as Zinc Oxide (ZnO), Silver (Ag), Titanium
Dioxide (TiO,), Copper (Cu), and Iron Oxide (Fe,0,) [65].
Silver or nanosilver and iron oxide NPs in fibers form
bespoke dressings with powerful antioxidant and
antibacterial capabilities that inhibit Gram-positive and
Gram-negative bacteria [66].

5.4. Angiogenic and Conductive Promoters

Some inorganic nanomaterials directly affect tissue
healing [67]. Zinc Oxide Nanoparticles (ZnONPs) increase
endothelial cell migration and blood vessel formation via
MAPK/Akt/eNOS [68]. Graphene Oxide (GO) and other
carbon-based nanomaterials increase scaffold electrical
conductivity, which stimulates electrically sensitive
biological signaling pathways [69]. Innovative hybrid
nanocomposites, including Type I collagen/TiO,-PVP
composites, combine natural polymers' biological qualities
with synthetic or inorganic components’ mechanical
strength [57]. This combination strikes a balance between
mechanical endurance and cellular communication
endurance. Bioactive compounds, such as curcumin, can
destroy bacteria, pus, and debris in the wound bed when
applied to composite scaffolds such as Polyvinyl Alcohol
(PVA) or Polycaprolactone (PCL). This speeds up the
disinfection and rehabilitation of the wound [70].

6. CLINICAL AND THERAPEUTIC APPLICATIONS OF
NANO-ENGINEERED SCAFFOLDS
The primary goal of developing nanostructured

scaffolds is to convert their improved biomimetic and
functional properties into real clinical benefits for skin
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repair and regeneration. Nanotechnology has shown
significant effectiveness in various therapeutic areas,
particularly in the intricate management of chronic
wounds and advanced aesthetic anti-aging treatments
[71].

6.1. Accelerated Wound Healing

Trauma, burns, chronic problems (such as diabetic or
venous ulcers), or disorders that damage the skin's
integrity make treatment very difficult [51]. The goal of
skin engineering and regeneration therapy is to make
structures that look and work like the ECM in the dermis
and epidermis [72]. This method gives the right biological
signals to let native cells grow, move, and change in a
regulated way [50]. However, due to the intricate
physiopathological characteristics of the wounds,
particularly in the case of a chronic wound, additional
therapeutic factors become significant. For example,
immunomodulatory and anti-inflammatory drugs have a
big effect on how chronic wounds heal [73]. Consequently,
the ideal nanoconstruct can concurrently serve as a
medication and cell delivery mechanism. Nonetheless,
data underscores that mesenchymal stem cells exhibit
anti-inflammatory and immunomodulatory properties in
both in vitro and in vivo settings [74-77]. In contrast,
infection and antibiotic use are crucial in the management
of wounds, especially chronic ones. Consequently, in the
pursuit of an optimal nanoconstruct for wound healing, it
is essential to evaluate the requisite characteristics for the
delivery of portions, such as anti-inflammatory drugs,
antibiotics, and organic substances with comparable
effects, alongside the simultaneous administration of cells
such as mesenchymal stem cells and keratinocytes [20,
75].

6.1.1. The Nanotechnology Solutions in Wound Care

Nanotechnology-based therapies, including
nanoparticles and nanofibrous scaffolds, can significantly
enhance wound healing. These sophisticated nano-based
solutions have shown promising results in promoting
tissue regeneration and mitigating inflammation [78, 79].
They can also help with wound healing by reducing
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scarring and speeding up the process. Table 3 shows how
nano-engineered scaffolds can be used for wound healing
and anti-aging treatments, as well as how they work and
what therapeutic benefits they have.

Nano-engineered scaffolds offer a superior therapeutic
platform compared to traditional grafts [80]. Their
effectiveness arises from several essential mechanisms:

6.1.1.1. ECM Mimicry and Cellular Response

Scaffolds engineered with precise mechanical
characteristics and ideal pore dimensions (80-100 pm)
provide effective cell adhesion, proliferation, and
infiltration, essential for skin regeneration [88]. Three-
dimensional electrospun nanofibers improve cell
penetration and growth, which are important for repairing
deep tissue [89]. To reduce negative reactions and
improve cellular function, the scaffold's mechanical
properties (such as strength, modulus, and viscoelastic
creep) must also be carefully matched to the host tissue
[90].

6.1.1.2. Particular Delivery of Therapies

Nanomaterials are employed as sustained-release
systems to enhance rehabilitation effects [91], which
encompass:

e FEncapsulation of Growth Factors: For instance, VEGF-
loaded chitosan/PEO nanofibers or PDGF-BB-loaded PLGA
nanoparticles embedded in nanofibers are developed for
the sustained release of growth factors, leading to
prolonged therapeutic effects [92].

e Active Compounds: Curcumin, a bioactive agent, may be
incorporated to assist in the removal of germs, pus, and
debris from the wound bed [93]. Moreover, arginine-
infused scaffolds have demonstrated beneficial effects on
cellular migration and proliferation [94].

e Gene and MicroRNA Delivery: Sophisticated nanocarriers
like liposomes and dendrimers safeguard delicate nucleic
acids (e.g., antisense oligonucleotides) from enzymatic
degradation, facilitating their controlled release to
regulate gene expression in the wound milieu [95].

Table 3. Nanotechnology solutions in wound healing and anti-aging.

by O Key Mechanisms WA Al 0| Outcomes/Benefits il Refs.
Area Examples Challenges
ECM mimicry (80-100 ym VEGF-loaded chitosan/PEO Accelerated closure/re- Scal@blhty; in vivo -
. pores); sustained growth factor . R stability; mechanical [[50, 74,
Wound Healing release (VEGE/PDGE); NFs; ZnO-PCL fibers; epithelialization; enhanced matching to host 80]
o ] . ’ Curcumin-collagen composites |angiogenesis; reduced infection ) g
antimicrobial action tissue
. S + RS Resistance
Anti-Infective IZ{OE .dlsrtl}ptlgn/ lon rteleas? é:’;g ’|Ag NPs in gelatin-PVA mats; ;?;?nﬁgti}?trigigg?g;?’ emergence; NP [81-83]
Therapy ) anti-inilammatory (TGF-p Fe,0,-PCL-gelatin membranes . o . toxicity dosing;
modulation) dehydrating disinfection aggregation
ROS scavenging; . Bioflavonoid nanocrystals; Au |Wrinkle reduction; fibroblast UV./ extrinsic aging
Anti-Adi collagen/elastin remodeling; NS Aty ; ) efficacy; deep
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6.1.1.3. Antimicrobial Efficacy

Nanoscaffolds possess intrinsic antibacterial and anti-
inflammatory characteristics, typically realized by the
integration of nanoparticles such as silver or zinc oxide.
This facilitates efficient cleaning and the control of chronic
inflammation without desiccating the wound bed [81]. ZnO
nanoparticles (ZnONPs) incorporated into polymeric fibers
markedly enhance cell adhesion and fibroblast
proliferation, thereby expediting the wound-healing
process [82].

Enhanced Functionality: Employing materials that
generate oxygen, such as sodium percarbonate or calcium
peroxide, and sending them through microchannels, is
among the new ideas. These materials have shown
significant benefits for reepithelialization, neovasculari-
zation, and collagen remodeling [96]. The latest innovative
development entails the creation of intelligent stimulus-
responsive nanosystems that allow wound dressings to
identify infection biomarkers and accurately deliver the
necessary medicinal drug as needed, advancing closer to
genuine individualized wound care [97].

6.2. Targeted Drug and Gene Delivery Systems

Nanomaterials have changed how drugs are delivered
in dermatology and wound care by making it possible to
release active substances in a targeted and controlled
way. This advancement tackles the issues of inadequate
solubility and systemic toxicity frequently linked with
traditional therapies. Nanocarrier Design: New types of
nanocarriers, such as liposomes, nanoemulsions, Solid
Lipid Nanocarriers (SLNs), and Nanostructured Lipid
Carriers (NLCs) [98], make it easier for medicinal
chemicals to cross the skin and enter the body. For
instance, intricate systems like gelatin/hyaluronic acid
scaffolds that utilize atorvastatin-loaded NLCs demons-
trate potential for cohesive drug delivery within
regenerative scaffolds [99]. This unique nanodelivery
technology is especially helpful because it makes poorly
water-soluble medications more bioavailable and prevents
bioactive compounds from breaking down in situ due to
enzymes or changes in pH [21].

Improving cell treatment: NPs are being used more
and more with cell treatment to help cells stay alive,
survive, and secrete angiogenic factors in a specific area
[100]. NPs and cell treatment are often combined to
enhance the release of angiogenic factors [100]. For
example, Ce0,-NPs added to polymeric scaffolds can act
as beneficial angiogenic structures, accelerating blood
vessel growth in TE [101]. Gold nanoparticles, for
example, can carry chemicals like alpha-lipoic acid that
help control inflammation and the growth of new blood
vessels [102].

6.3. Anti-aging Methods and Dermal Regeneration

Intrinsic and extrinsic factors both cause skin aging,
which is characterized by decreased collagen levels and
reduced interstitial water content [8]. A major part of this
procedure is UV light, which makes damaging Reactive
Oxygen Species (ROS) [84]. Nanomaterials are very

important for developing new anti-aging methods, as they
have unique surface chemistry and are highly reactive.

1. Antioxidant Properties: Nanomaterials are effective
at picking up ROS [103]. Nanocrystals derived from
bioflavonoids, natural polyphenolic chemicals, can be
synthesized using top-down or bottom-up approaches.

These nanocrystals are particularly effective at
penetrating the epidermis and exhibit several
pharmacological actions, including antioxidant, anti-
inflammatory, and anti-aging effects [104].

2. ECM Support and Reconstruction: Nanofibrous
structures give structural support and signaling signals
that help the body make collagen and elastin again. This
procedure is crucial for making the dermis thicker and
making wrinkles less noticeable [105]. This application
relies heavily on new nanocarriers, such as liposomes,
nanoemulsions, and NLCs, which help deliver active anti-
aging drugs deeper into the skin [8, 98].

3. Improved  Delivery: Nanocarriers  help
cosmeceuticals like vitamin C and retinoids reach deeper
into the skin by targeting them more effectively. This
makes them much more effective than regular topical
preparations [106]. Using these nanocarriers makes it
easier for drugs to go into damaged or old skin layers
while also lowering the risk of medication toxicity [107].

7. CHALLENGES AND FUTURE DIRECTIONS

Despite substantial advances, numerous pivotal
obstacles hinder the integration of these discoveries into
widespread clinical applications:

1. Complexity of Models: Current 3D in vitro models
still have trouble adequately mimicking the skin's complex
structure and different layers [51].

2. Availability and Individualization: Making scaffolds
that are very accurate for each patient, as well as the
difficulties of increasing production for widespread clinical
utilization, are major engineering issues [98].

3. Directive Framework: There is an urgent need for
clear and defined rules for complicated nanocomposites to
make it easier for them to be used in clinical settings.

The future of skin regeneration medicine is moving
toward smart nanosystems that respond to stimuli, which
are commonly called “innovative dressings.” These high-
tech gadgets will be able to keep an eye on the wound
environment in real time, such as pH levels and infection
indicators, and they will be capable of starting the exact
release of medicines on their own. This is the next step in
individualized and very effective skin rejuvenation and
repair. Additionally, creating scaffolds that actively
improve stem cell preservation, persistence, and
differentiation in situ is a fantastic way to achieve full and
functional skin regeneration.

CONCLUSION AND FUTURE OUTLOOK

Nanotechnology has changed the field of skin
regeneration medicine in a big way. This advancement
addresses critical clinical challenges associated with
traditional skin grafting, such as donor site morbidity and
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immunological rejection [6]. This study stresses that nano-
engineered scaffolds are a big part of this change since
they can look and work like the native ECM at the
nanoscale. Electrospinning, 3D bioprinting, and self-
assembly are all advanced nanofabrication methods that
let you make scaffolds with excessive surface area-to-
volume ratios, regulated porosity, and customizable
mechanical properties [8, 108]. To make efficient
regenerative constructs, it is important to use natural
nanostructured polymers (like collagen and chitosan) for
their natural bioactivity, synthetic polymers (like PCL and
PLGA) for their mechanical flexibility, and inorganic
nanoparticles (like AgNPs and ZnONPs) for their strong
antimicrobial and angiogenic properties [109]. There are
several clinical uses for these nano-engineered systems.
They are better at speeding up wound healing because
they improve cell adhesion, control inflammation, and
deliver therapeutic substances (such as growth factors or
antibiotics) over time [74, 110]. Nanocarriers are also
becoming more essential in anti-aging treatments. They
help transport antioxidants deep into the skin, where they
can help repair damage caused by toxic substances and
promote skin remodeling. Therefore, this new area needs
further investigation, and multiple studies are already
underway.
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