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Abstract: Lipid rafts are cholesterol-rich plasma membrane domains that regulate signal transduction. Lipid rafts can be 

disrupted by perturbing cholesterol metabolism, either by inhibition of cholesterol synthesis (e.g. by statins), by 

cholesterol sequestration or removal from the membrane (e.g. by methyl- -cyclodextrin or filipin III) or by substitution 

with cholesterol derivatives, which do not support raft assembly (e.g. 5-cholestene 5- -ol). Work performed in our 

laboratories as well as by others documented that lipid raft disruption precipitates classic apoptosis in normal and 

transformed keratinocytes and inhibited cell proliferation. Two mechanisms seem to play a particularly important role. 

One is mediated via the membrane death receptors such as Fas and TRAIL. Cholesterol depletion causes a ligand-

independent activation of these receptors and activation of caspases. The other is mediated via the survival kinase Akt. 

Raft disruption causes a rapid inhibition of Akt via dephospphorylation of the regulatory sites Thr
308

 and Ser
473

. The 

mechanism of this was the abrogation the binding of Akt and the major Akt kinase, PDK-1 to the membrane via pleckstrin 

homology (PH) domains. Diminished Akt activity results in deactivation of mTOR, activation of FoxO3a and an 

increased sensitivity to apoptotic stimuli. Thus, the integrity of lipid rafts is required for the activity of Akt and cell 

survival and may serve as a potential pharmacological target in the treatment of epidermal cancers. 

 The plasma membrane contains nanometer-large 
dynamic microdomains enriched in cholesterol, 
sphingolipids and gangliosides called “lipid rafts”. These 
structures are important regulators of signal transduction, 
membrane geometry, and lateral movement of the molecules 
(see refs. [1-5] and elsewhere in this volume). 

 Since lipid rafts form spontaneously only in the narrow 
range of cholesterol concentration, the perturbation of 
membrane cholesterol disrupts lipid raft integrity and has 
been used extensively to study their role in signaling 
pathways. Of note, many receptors and enzymes, crucially 
involved in the regulation of cell survival and apoptosis have 
been reported to associate with rafts. For example, the 
epidermal growth factor receptor (EGFR), which proper 
function is a prerequisite for keratinocyte survival, can be 
transiently activated by cholesterol depletion due to 
increased ligand-independent dimerization and cross-
phosphorylation [2, 6] after release from the rafts. On the 
other hand, cholesterol depletion induces the activity of the 
stress kinase p38 [7] which signals towards cell cycle stop 
and increased differentiation of keratinocytes. 

 Old biochemical observations documented that cancer 
tissues contain more cholesterol than healthy tissue and it 
has been speculated that this may have functional 
significance for tumor growth [8]. Increased cholesterol 
content in the tissue and patients’ sera have been found in  
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actinic keratoses [9, 10]. Interestingly, cholesterol depletion 
from the membranes of leukemic cells and various other 
cancer cells resulted in apoptosis and increased sensitivity to 
chemotherapeutic drugs [11]. In this paper we review 
evidence that the same may hold true for normal and 
transformed human keratinocytes. 

DEPLETION OF MEMBRANE CHOLESTEROL 
CAUSES KERATINOCYTE APOPTOSIS 

 Our laboratories have been the first to report that 
depletion of cholesterol in cultured keratinocytes causes 
apoptosis [12, 13]. These observations have been 
independently confirmed [14]. Elevated levels of 
cholesterol-rich lipid rafts in cancer cells are correlated with 
sensitivity to apoptosis induced by cholesterol-depleting 
agents [14]. Apoptotic keratinocytes in cholesterol-depleted 
cultures show the typical features of programmed cell death, 
including caspase activation, DNA fragmentation, nuclear 
shrinkage and formation of apoptotic bodies. Apoptosis has 
been induced by a variety of cholesterol-modifying agents 
such as methyl- -cyclodextrin, statins, ceramides (which 
displace cholesterol from the rafts), filipin III (an agent that 
inactivates cholesterol in the membrane by complex 
formation) or cholesterol oxidase. However, a more detailed 
electron microscopic analysis of cholesterol-depleted cells 
revealed other interesting features, including a striking 
swelling of mitochondria, loss of mitochondrial potential 

m and autophagocytosis
1
 It is thus possible that 
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autophagocytic cell death is also involved in the cell death 
due to lipid raft disruption. This issue is currently 
investigated in our laboratory. 

CHOLESTEROL DEPLETION CAUSES A LIGAND-
INDEPENDENT ACTIVATION OF DEATH 
RECEPTORS IN KERATINOCYTES 

 Activation of membrane death receptors such as Fas or 
TRAIL constitutes one of the two major pathways leading to 
apoptosis. Under most circumstances, these receptors are 
activated upon binding of the cognate ligands, such as FasL 
(Fas ligand). There is extensive evidence that association 
with or dissociation from lipid rafts modulates the activatory 
state of death receptors [15]. In most cells, the activation of 
Fas takes place within the milieu of lipid rafts and raft 
disruption blocks Fas-dependent apoptosis [16, 17] 

 A theory has been forwarded suggesting that Fas, upon 
recruitment to rafts, forms large complexes with other 
components of the apoptotic machinery, including caspase-8 
and is further activated intracellularly precipitating apoptosis 
[18]. However, in some cell types, including epidermal 
keratinocytes and squamous cell carcinoma the opposite is 
true: depletion of cholesterol causes Fas clustering outside 
the rafts and activation of cell death pathway [13, 19]. The 
mechanism seems to be similar: upon cholesterol depletion 
large membranous aggregates of Fas are observed which co-
localize with caspase 8 and FADD (Fas-associated death 
domain protein). It seems that this activation is not 
dependent of the presence of ligand. Moreover, 
keratinocytes, which are slightly cholesterol depleted, are 
more sensitive to the death inducing ligands, such as FasL 
and TRAIL. Since carcinoma cells contain more cholesterol 
that normal cells, it is in principle possible to utilize this 
phenomenon for tumor sensitization to death ligands thus 
minimizing their systemic toxicities. 

AKT/PROTEIN KINASE B IS RESPONSIVE TO LIPID 
RAFT DISRUPTION AND MEDIATES 

KERATINOCYTE APOPTOSIS 

 It is important to note that activation of surface death 
receptors is neither necessary nor sufficient for keratinocyte 
apoptosis after cholesterol depletion. Fas-induced apoptosis 
can normally be blocked by caspase-8 inhibitors, but 
cholesterol-depleted keratinocytes undergo apoptosis even in 
the presence of this inhibitor (unpublished observations). 

 Akt/protein kinase B is a cardinal regulator of cell 
survival and its pathologic increase in activity causes 
carcinogenesis [20, 21]. Membrane receptors including the 
ErbB family of surface receptors, IGFRs or Ras stimulate 
Akt kinase activity via the phosphoinositide 3-kinase (PI3K) 
[22, 23]. PI3K catalyzes the conversion of membrane 
phosphatidylinositol 4-5-bisphosphate PIP2 to 
phosphatidylinositol 3,4,5-trisphosphate PIP3, to which both 
Akt and its immediate activator phosphatidylinositol-
dependent kinase 1 (PDK-1) bind via pleckstrin-homology 
(PH) domains [24, 25]. Full activation of Akt requires 
phosphorylation of Thr

308 
by PDK-1, followed by a second 

phosphorylation at Ser
473 

[26]. Downstream components of 
the Akt-PI3K signaling cascade include mammalian target of 
rapamycin (mTOR)/ p70

S6K
 pathway [27, 28] and the 

apoptosis-related Forkhead familiy of transcription factors 
FoxO, causing their emigration from the nucleus [29, 30]. 

 Lipid rafts are known to be enriched in PIP2 and PIP3 
[31] and are therefore likely to provide the particularly 
permissive milieu for the interaction between PDK-1 and 
Akt. Indeed, Akt resides in the detergent-resistant (raft-like) 
membrane fraction. Using the fluorescence correlation 
spectroscopy technique Lasserre et al. [32] demonstrated that 
recruitment of Akt to lipid rafts facilitates its enzymatic 
activation. Guo et al. [33] confirmed these results using yet 
another technique of fluorescence resonance energy transfer 
with an artificially expressed Akt activity reporter. They 
showed a higher Akt activity with faster activation kinetics 
within lipid rafts and impaired Akt signaling in cholesterol-
depleted cells. However, the activation of Akt in rafts seems 
to depend on both the cell type and the stimulus involved. In 
NIH 3T3 cells used by Guo et al. [33] platelet-derived 
growth factor (PDGF) stimulated Akt in both raft and non-
raft regions, albeit more efficiently in the raft domains. In 
contrast, insulin-like growth factor 1 (IGF-1) stimulates Akt 
that is localized in raft regions and in this case raft disruption 
by e.g. cholesterol depletion abolishes the total cellular Akt 
activity to a higher degree. 

 In keratinocytes and keratinocyte-derived cancer cell 
lines the activity of Akt is also dependent on the integrity of 
lipid rafts. Li et al. [14] showed that in A431 cells 
cholesterol depletion by methyl- -cyclodextrin or 
simvastatin caused apoptosis accompanied by Akt 
deactivation. Confirming our previous observations [2] they 
showed that At deactivation occurs in spite of the fact that 
EGFR is activated. Our recent results

2
 confirm these 

findings. In both normal keratinocytes and keratinocte cell 
lines (HaCaT, A431) methyl- -cyclodextrin and other 
cholesterol-active agents such as filipin III, cholesterol 
oxidase, simvastatin and 5-cholesten-5- -ol induced an 
abrupt dephosphorylation of Akt at its regulatory sites 
(Thr

308
 and Ser

473
), inactivation of mTOR and nuclear export 

of FoxO3a. The mechanism of Akt deactivation in 
keratinocytes is reduction of the number of the 
phosphoinositide-enriched sites in the membrane to which 
Akt and PDK-1 bind via PH domains. Thus, in keratinocytes 
lipid rafts can function as reaction nanochambers allowing 
close proximity and enzymatic interaction between PDK-1 
and Akt. Cholesterol perturbation causes disruption or 
dispersion of lipid rafts and movement of the growth factor-
PI3K complexes into the more fluid, non-raft areas of the 
membrane. As a consequence, the PIP3 produced by this 
enzyme is dispersed in the membrane instead of being 
concentrated in the highly organized raft nanodomains. As a 
consequence, the binding of PH domain proteins, such as 
Akt, PLC  and PDK-1 to the membrane can be impaired 
which precludes their spatial interaction and Akt 
phosphorylation. 

 The discovery of the cholesterol-dependence of Akt in 
keratinocytes is likely to have practical consequences. Akt in 
keratinocytes constitutes a dominant survival pathway and 
its blockade leads to apoptotic and autophagic cell death, 
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even in the presence of an active EGFR-ERK axis. 
Decreased Akt activity renders the cells more susceptible to 
chemotherapeutics. The PI3K-Akt-mTOR pathway is 
hyperactivated in many types of cancer providing survival 
advantage to transformed cells [34] often due to inactivatory 
mutations in the gene coding PTEN lipid phosphatase 
(phosphatase and tensin homologue deleted on chromosome 
ten) mediating dephosphorylation of PIP3 to PIP2. Since 
cancer cells are enriched in caveolae and lipid rafts 
comparing to normal cells [14], pharmacologic cholesterol 
depletion may be a promising method for increasing 
chemosensitivity to the cytostatics in patients with malignant 
tumors. Preliminary observations on high dose statins 
support this notion [11]. 
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