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Abstract: The highly amiloride-sensitive epithelial sodium channel ENaC is well known to be involved in controlling 

whole body sodium homeostasis and lung liquid clearance. ENaC expression has also been detected in the skin of 

amphibians and mammals. Mice lacking ENaC expression lose rapidly weight associated with an epidermal barrier defect 

that develops following birth. This dehydration is accompanied with a highly abnormal lipid matrix composition and an 

impaired skin surface acidification. This strongly suggests a role of ENaC in the maturation of barrier function rather than 

in the prenatal generation of the barrier, and may be as such an important modulator for skin hydration. In parallel, gene 

targeting experiments of regulators of ENaC activity, membrane serine proteases, also termed channel activating 

proteases, like CAP1/Prss8 and matriptase/MT-SP1 by themselves have been shown to be crucial for the epidermal barrier 

function. In our review, we mainly focus on the role of ENaC and its regulators in the skin and discuss their importance in 

the epidermal permeability barrier function. 
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INTRODUCTION 

The Barrier Function of the Skin 

 The skin barrier protects against extensive water loss in 
one direction (outward barrier) and against the invasion of 
harmful substances from the environment (inward barrier). 
The complex cellular organization in the epidermis, and the 
way keratinocytes interconnect, contribute to the epidermal 
permeability barrier. It has been proposed that during 
phylogenetic evolution, the mammalian skin has developed 
at least two independent systems for forming an efficient 
barrier, namely the cornified envelope (a protein-lipid layer) 
in the stratum granulosum and corneum and the tight 
junctions in the second last nucleated layer of the stratum 
granulosum [1]. 

 More than 20 intercellular proteins, connecting adjacent 
corneocytes, maintain the integrity of the stratum corneum 
and are directly related to desquamation processes. Thus, 
concurrently, a series of structural proteins, including 
involucrin, loricrin and the class of small proline-rich 
proteins (SPRs) and S100 proteins are synthesized and 
sequentially cross-linked by transglutaminases to reinforce 
the cornified envelope just beneath the plasma membrane 
[2]. There is a functional redundancy, which is mainly due to 
the overlapping functions of the transglutaminase substrates, 
like e.g., loricrin and involucrin [3, 4]. Evidence that this 
cornified envelope assembly is necessary for barrier 
development in skin was obtained from the study of  
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transglutaminase 1-deficient mice that lack cornified 
envelopes resulting in neonatal lethality [5]. Alterations of 
corneocyte morphology have also been described in mouse 
models with epidermal permeability barrier defects as, e.g., 
irregular shaped corneocytes in Klf4 null mice [6], and 
volume-enlarged corneocytes in serine protease matriptase/ 
ST14 -/- [7] and CAP1/Prss8 -/- [8] animal models. Barrier 
lipids are formed in mice only few days before birth [9] and 
their deficiency in pSAP- and beta-glucocerebrosidase 
results in disruption of the water permeability barrier and in 
early death [10, 11]. Equally, mice with a targeted disruption 
of the fatty acid transport protein 4 (Fatp 4) showed a 
disturbed fatty acid composition of epidermal ceramides, 
despite a normal distribution of tight junction proteins [12]. 
Thus, mice with impaired skin barrier function either showed 
a defect in only one system or in the two components of the 
barrier in parallel. For example, Klf4 knock-out [6] and 
transgenic mice expressing desmoglein-3 ectopically [13] 
showed postnatal lethality due to dehydration, whereas 
layered organization of the keratinocytes was not affected. 
Mice deficient for the membrane-bound serine protease 
CAP1/Prss8 showed a defect in the two systems, a disturbed 
stratum corneum lipid composition as well as functionally 
defective tight junctions [8], whereas mice deficient for the 
tight junction protein claudin-1 exhibited only a defect in the 
tight junctions [14]. This underlies the importance that both 
systems are needed and might work concurrently. Equally 
important is the natural moisturizing factor composed of 
amino acids and their derivatives, such as pyrrolidone 
carboxylic acid, together with lactate, sugars and urea and 
act as efficient humectants to maintain free water in the 
stratum corneum [15]. The natural moisturizing factor is 
derived from filaggrin, synthesized in the granular layer as 
profilaggrin, a large histidine-rich and heavily 
phosphorylated protein that functions to aggregate keratins. 
At the transition between the granular layer and the stratum 
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corneum, filaggrin is subjected to further modifications 
through protein phosphatase PP2A and at least three 
different proteases, including profilaggrin proteinase 1, 
calpain and furin, resulting in filaggrin peptides of 27 kDa in 
mice. Proteolyzed into free amino acids, these are thought to 
provide high osmolarity necessary for the retention of water 
and maintenance of tissue flexibility. Not surprisingly, 
mouse models with defect in filaggrin gene (flaky tail, ft) 
[16] exhibit severe impaired epidermal barrier function. 
Additionally, animal models of caspase-14 [17], involucrin, 
envoplakin, periplakin [18], lipoxygenases [19] and of serine 
proteases discussed later in this review, display defective 
filaggrin processing and impaired epidermal permeability. 

 The major lipid classes in the stratum corneum are 
ceramides, free fatty acids and cholesterol. Ceramides are 
amide-linked fatty acids containing a long-chain amino 
alcohol called sphingoid base and account for 30 to 40% of 
stratum corneum lipids. Ceramides are generated by serine-
palmitoyl transferase as rate-limiting enzyme and by 
hydrolysis of both glucosylceramide through beta-glucocere-
brosidase and sphingomyelin through acid sphingomyeli-
nase. The stratum corneum contains at least nine different 
free ceramides, covalently bound to cornified envelope 
proteins, e.g., involucrin [20, 21]. The epidermis contains 
free fatty acids as well as fatty acids bound in triglycerides, 
phospholipids, glycosylceramides and ceramides. Cholest-
erol is the third major lipid class in the stratum corneum. 
Although basal cells are capable of reabsorbing cholesterol 
from circulation, most cholesterol in the epidermis is 
synthesized in situ from acetate. Cholesterol levels are 
regulated by the membrane transporter ATP-binding cassette 
subgroup 1 member 12 transporter (ABCA12), responsible 
for cholesterol efflux, liver X receptor activators and 
peroxisome proliferator-activated receptors [12]. 

 Tight junctions are cell-cell junctions connecting 
neighboring cells, controlling the paracellular pathway of 
molecules (barrier function) and separating the apical from 
the basolateral part of a cell membrane (fence function). In 
human epidermis, various tight junction proteins have been 
identified, including occludin, claudins 1, 4, and 7, JAM-1 
(junctional adhesion molecule-1), ZO-1 (zonula occludens 
protein 1) and MUPP-1 (multi-PDZ protein-1) [22]. During 
epidermal re-generation, the synthesis of tight junction 
proteins precedes the formation of the stratum corneum [23]. 
Therefore, beside barrier and fence functions, tight junctions 
have been proposed to present a rescue system when 
epidermal barrier is perturbed, challenged or absent. 

 At birth, the epidermal barrier is normally formed 
consisting of the cornified envelope [24] that develops 
during the late stages of embryonic life [25]. Yet, it is known 
that a postnatal maturation of the skin exists as the skin 
surface pH is near neutral in humans [26-28] and rodents 
[29, 30] to reach more acidified levels after 10 days (human) 
[31] and in 7 days (rat) [32] and 2 days (mice) [33]. Thus, in 
human infants, the delay in acidification could explain the 
increased infantile risk for irritant/allergic contact dermatitis, 
infection, and cutaneous absorption of toxic chemicals [27]. 
Defects in acidification may lead to increased water loss [29] 
and delayed epidermal permeability barrier recovery [34] 
explained by the impairment of sphingomyelinase and beta-
glucocerebrosidase [21, 35]. Acidification is defective in the 

sodium/hydrogen antiporter-1 knock-out mice [32, 34, 36] 
and in the phospholipase A2-deficient mice [37]. Mice over-
expressing the Ca

2+
 receptor showed an accelerated barrier 

function with a strong hyperkeratosis with increase of 
inositol-3-phosphate (IP3) [38]. Thus beyond the genes that 
are clearly known to be crucial for the prenatal barrier 
formation, there are genes/processes that are rather important 
for the postnatal maturation of the skin barrier function (e.g. 
ENaC and its regulator the membrane-bound serine protease 
CAP1/Prss8). 

Barrier Dysfunctions in Skin Diseases 

 Several skin diseases are known to show defects in 
epidermal permeability barrier function. The most classical 
ones include atopic dermatitis and psoriasis, although the 
majority of the studies on the pathogenesis of atopic 
dermatitis and psoriasis concentrate on the primary role of 
the immune system abnormalities [39, 40]. However, it is 
still not clear whether permeability barrier defect is a cause 
or consequence of inflammation. Atopic dermatitis is 
characterized by chronic, pruritic, inflammatory dermatosis 
and the impaired barrier function is most likely caused by 
increased epidermal proliferation and disturbed differentiat-
ion, including changes in lipid composition [41, 42]. Loss-
of-function genetic variants in the gene encoding filaggrin 
have been shown to be strong predisposing factors for atopic 
dermatitis [43]. In psoriasis, the level of transepidermal 
water loss is directly related to the clinical severity of the 
lesion [44]. The mode of inheritance of psoriasis is complex; 
classic genome-wide linkage analysis has identified at least 
nine chromosomal loci with statistically significant linkage 
to psoriasis, comprehending genes involved in immune 
functions and epidermal differentiation [45]. 

 A disturbed skin barrier is relevant for the pathogenesis 
of ichthyoses, which involve several generalized genetic skin 
disorders. All types of ichthyosis exhibit dry, thickened, 
scaly skin. The severity of symptoms can greatly vary, from 
mild types as ichthyosis vulgaris, up to life-threatening 
conditions such as harlequin-type ichthyosis. Aberrant 
filaggrin expression has been found in ichthyosis vulgaris 
[46]. Several ichthyoses are associated with inherited 
disorders of lipid metabolism. Mutations in 
transglutaminase-1 and deficiency in the enzyme steroid 
sulfatase have been found defective in lamellar ichthyosis 
and recessive X-linked lamellar ichthyosis, respectively [47, 
48]. Lamellar ichthyosis type 2 (LI2) and the harlequin fetus 
type of congenital ichthyosis are linked to mutations in ATP-
binding cassette subgroup 1 member 12 transporter 
(ABCA12), a membrane transporter responsible for 
cholesterol efflux [49, 50]. 

 Epithelial barrier function has emerged as a critical factor 
in the development and progression of allergic diseases. 
Importantly, patients with atopic dermatitis manifest 
compromised skin barrier associated with increased allergen 
sensitization that can augment the atopic inflammatory 
response [51]. This suggests a more global mechanism by 
which allergen sensitization could contribute to skin 
inflammation. Even though the epithelium was initially 
considered to function just as a physical barrier, it is now 
seen as a central player in sensitization processes. Allergens 
often interfere directly or indirectly with the innate immune 
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functions of airway epithelial cells and dendritic cells of the 
skin [52]. 

ENaC and its Role in the Epidermal Barrier Function 

 The non-voltage gated, highly amiloride-sensitive 
epithelial sodium channel (ENaC) has been extensively 
studied as a key regulator for sodium homeostasis [53, 54]. 
ENaC belongs to a gene family called ENaC/degenerin 
(DEG) encoding the ENaC -, -, - (rodents and human) 
and -subunits (humans) [55]. The -ENaC isoform can 
substitute the -ENaC subunit, but is often found in organs 
distinct from the classical sodium absorbing epithelia [56]. 
Each subunit has two hydrophobic domains, corresponding 
to two transmembrane domains, TM1 and TM2, a large 
extracellular loop making more than one-half of the channel 
protein representing a structural feature unique to the 
ENaC/DEG family members with short cytoplasmic N- and 
C-termini [57, 58]. Electrophysiological characteristics of 
ENaC include a high sensitivity to the potassium-sparing 
diuretic amiloride (Ki 0.1 μM), a low conductance of about 5 
pS [58], long opened and closed times (0.5-5 s), and a high 
selectivity for sodium over potassium (> 100:1) [55]. ENaC 
activity at the organ level seems regulated by the presence or 
absence of the channel at the membrane, and steroid 
hormones, like aldosterone or glucocorticoids, and 
membrane-bound serine protease (see for review [53]). 

 ENaC subunits are also expressed in the tongue where 
have been shown to be implicated in salt tasting [59, 60], in 
the inner ear [61] or the retina function [62]. The presence of 
an amiloride-sensitive current in the skin of amphibians is 
known since decades now [63-65]. The movements of ions 
and their distribution can lead to the formation of an 
electrical potential. The presence of a negative potential 
difference has been shown in skin [66]. This potential was 
impaired if treated with various channel blockers like 
ouabain (Na/K ATPase blocker) or L-type calcium channel 
blocker like verapamil, and nifedipin [67]. Thus, ENaC 
activity may play a role in the regulation of diverse cellular 
processes in the skin like e.g. barrier function, galvanotaxis 
and wound healing [68]. 

 Different mouse lines have been established in which the 
ENaC activity has been altered, and genes encoding for 
Scnn1a ( -ENaC) [69], Scnn1b ( -ENaC) [70] and Scnn1g 
( -ENaC) [71] have been inactivated. The phenotypes 
observed in these mice demonstrate that each subunit is 
essential for survival and for regulation of sodium transport 
[72-75]. Inactivation of the - and -ENaC subunit led to 
reduced ENaC activity, whereas gene targeting of the -
ENaC subunit resulted in completely abolished ENaC 
activity [53]. The presence of all three subunits of ENaC has 
been demonstrated in the epidermis of mouse, human and rat 
but also in hair follicles and in sweat glands (humans) [76, 
77]. Moreover the expression of ENaC seems to increase 
with differentiation of the keratinocytes [78]. Patch clamp 
recordings on human keratinocytes reveal a sodium channel 
conductance that is blocked by benzamil with similar affinity 
and voltage dependence of the amiloride block as previously 
described for ENaC [78]. Further evidence that ENaC-
mediated Na

+
 transport may be implicated in keratinocyte 

and epidermal differentiation comes from the previous 
analysis of newborn -ENaC knock-out mice which exhibit 

epidermal thickening and premature lipid secretion in the 
upper epidermis, suggesting that ENaC-mediated sodium ion 
fluxes control selective aspects of keratinocyte 
differentiation [79]. Gene inactivation of the alpha subunit of 
the highly amiloride-sensitive epithelial sodium channel ( -
ENaC, Scnn1a) leads to distinct perinatal effects on 
epidermal development and homeostasis, which culminates 
in a barrier defect within the first 24h, characterized by a loss 
of body weight (by 6% in 6 hours) and an increased 
transepidermal water loss, which is accompanied by a higher 
skin surface pH in one day-old pups [33]. While early and 
late differentiation markers, as well as tight junction protein 
distribution and function seem not affected, deficiency of -
ENaC severely disturbs the stratum corneum lipid 
composition with decreased ceramide and cholesterol levels, 
and increased pro-barrier lipids glucosylceramide, 
sphingomyelin and cholesterol sulfate, while covalently-
bound ceramide and -hydroxylated fatty acid are drastically 
reduced. Ultra-structural analysis revealed morphological 
changes in the formation of intercellular lamellar lipids and 
the lamellar body secretion. Extracellular formation of the 
lamellar lipids proved to be abnormal in the knock-outs. In 
conclusion, ENaC-deficiency results in progressive 
dehydration and consequently weight loss due to severe 
impairment of lipid formation and secretion (Table 1). Our 
data further demonstrate that ENaC expression is required 
for the postnatal maintenance of the epidermal barrier 
function, but not for its generation. 

 Transmembrane ionic fluxes are controlling keratinocyte 
differentiation and the synthesis of cornified envelope and 
other differentiation-specific proteins, conversion of 
profilaggrin to filaggrin and secretion of stratum corneum 
lipid precursors [80]. Further evidence that ions may be 
important regulators in these processes is suggested by the 
presence of a calcium gradient within the epidermis, with 
higher quantities of Ca

2+
 in the upper than in the lower 

epidermis [81]. Moreover, Na
+
 influx also modulates Ca

2+
-

induced keratinocyte differentiation. Thus, application of 
amiloride, the known inhibitor of ENaC, blocks Ca

2+
-

induced differentiation in keratinocytes. Only recently, mice 
deficient for ion/water channels and transporters are 
analyzed for their skin phenotype. Keratinocytes from mice 
deficient for the Ca

2+
-sensing receptor did no longer respond 

to extracellular Ca
2+

, and the mice exhibit disordered 
differentiation [82]. Mice deficient for the sodium channel 
ENaC show severe dehydration and mice lacking the NHE1 
exchanger exhibit an impaired stratum corneum acidification 
[29, 34]. The water transporting protein aquaporin-3 
functions as a glycerol transporter in mammalian skin and 
mice deficient in AQP3 exhibit dry skin with reduced 
stratum corneum hydration, decreased elasticity and 
impaired biosynthesis [83, 84]. In human, mutations in the 
different subunits of the channel are the cause of human 
hereditary diseases [85]. Hereditary mutations of ENaC 
subunits have been described leading to disturbed sodium 
homeostasis. First, in the Liddle’s syndrome, the C-terminal 
tail of  or  is mutated in the proline-rich domain, 
preventing ubiquitination by Nedd4-2 then causing 
hypertension and hypokaliemia due to the higher availability 
of ENaC at the membrane [53, 54]. Second, the 
pseudohypoaldosteronism type I (PHA-1), characterized by a 
decreased ENaC activity resulting in salt wasting and 
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hypotension, is due to mutations leading to expression of 
inefficient forms of the three subunits [75]. In PHA-1 
patients carrying ENaC-mutations, macroscopic skin lesions 
like dermatitis have been described, although the skin 
phenotype was not further analyzed. Thus, it is still unknown 
whether dysfunction of ENaC channels in skin contributes to 
and/or is indeed causative for defined skin diseases [68]. 

ENaC Regulators in the Epidermal Permeability Barrier 

Function 

 To detect proteins involved in ENaC regulation, Vallet 
and colleagues screened a Xenopus A6 cell complementary 
DNA library allowing the isolation of a serine protease 
whose co-expression with ENaC induced a 3-fold increase in 
the ENaC sodium current [86]. Consequently, this serine 
protease was termed Xenopus channel-activating protease-1 
(xCAP1), encoded by Prss8 gene and ortologous to human 
prostasin, that presents a glycosyl-phosphatidyl-inositol 
(GPI)-anchored protein [86]. Two years thereafter, the 
mouse counterpart was cloned in a cortical collecting duct 
cell line derived from mouse kidney and identified as mouse 
CAP1 (mCAP1) [87]. CAP1/Prss8 appeared to be co-
expressed in epithelial tissues with ENaC such as kidney, 
lung, colon, skin, ovary and salivary glands [86, 87]. 
CAP1/Prss8 is produced as zymogen and in vitro 
experiments indicated its inability to auto-activate, 
suggesting that its proteolytic activity is regulated by an 
upstream protease. Accordingly, no evidence of CAP1/Prss8 
intramolecular cleavage was seen in vitro experiments in 
Xenopus oocytes [88, 89]. Hypertension and elevated levels 
of urinary CAP1/Prss8 have been reported in rats transiently 
over-expressing CAP1/Prss8 [90]. Increased urinary 
CAP1/Prss8 excretion also occurs in patients with 
hypertension from primary hyperaldosteronism and is 
stimulated by saline infusion or mineralcorticoids [91, 92]. 
CAP1/Prss8 is highly expressed in cystic fibrosis airways 
and it is a strong basal activator of ENaC in cystic fibrosis 
airway epithelial cells [93, 94]. These observations predict 
that CAP1/Prss8 has a critical role in regulating epithelial 
sodium transport in normal and pathological conditions. On 
the other hand, CAP1/Prss8 is down-regulated in hormone 
refractory prostate cancers, gastric and breast cancer [95-98] 
and it has been found over-expressed in epithelial ovarian 
cancer [99] suggesting an additional role of CAP1/Prss8 in 
tumor invasion. Carattino et al. claim that proteolytic 
processing of ENaC gamma subunit by CAP1/Prss8 has a 
dominant role in ENaC activation [100]. In contrast, 

Andreasen and colleagues have shown that catalytically 
inactive CAP1/Prss8 is still able to fully activate ENaC [89]. 
To ascertain the role of mCAP1 in the different tissues, an 
allelic series of mutations at the mouse Prss8 gene locus 
were generated to delete its vital region (exon 3, 4 and 5) in a 
temporally and/or tissue-specific manner [101]. These 
animals allowed studying the consequences of CAP1/Prss8 
deficiency in epidermal function by crossing them with 
keratin-14 Cre-recombinase transgenic mice [102]. Mice 
lacking CAP1/Prss8 in skin died 60 hours after birth [8]. A 
member of the epidermal proteins, the lipid constituent of the 
cornified envelope and the tight junction functionality were 
found defective in skin-specific CAP1/Prss8 knock-out mice, 
indicating that each component of the epidermal 
permeability barrier suffered from the lack of CAP1/Prss8 in 
the skin. The epidermis lacking CAP1/Prss8 presented an 
aberrant pattern of profilaggrin-derived proteolytic products, 
with nearly complete loss of filaggrin monomers. 
Corneocytes morphogenesis was perturbed and the level of 
pro-barrier and covalently bound lipids was altered in 
CAP1/Prss8-deficient epidermis. No expression of occludin 
was found in the CAP1/Prss8-deficient skin and the tight 
junction functionality, at least against molecules of about 
600 Dalton, was severely affected. These defects can be 
causative of a more reddish and wrinkled skin evident few 
hours after birth, a hyperkeratotic stratum corneum and 
incompletely matured and reduced in number hair follicles 
and a severe impairment of both inward and outward barrier 
functions of the epidermis, which most likely lead to early 
postnatal death in mice lacking CAP1/Prss8 in the skin [8]. 

 The ENaC-mediated sodium current, measured in the 
mouse cortical collecting duct cell line, from which mCAP1 
was identified, appeared to be only 50% sensitive to the 
serine protease inhibitor aprotinin [87]. This suggested that 
ENaC activation depends on more than one serine protease 
with different sensitivity to aprotinin, and lead to the 
discovery of two additional membrane-bound serine 
proteases found to increase 6 to 10-fold ENaC currents [87]. 
Accordingly, these serine proteases were called mCAP2 and 
mCAP3. mCAP2 is a type II-oriented membrane-bound 
serine protease whom protease domain shares homology 
with xCAP1 (45%), mCAP1 (43%), and 80% with the 
human orthologue hTMPRSS4 [103]. CAP2/Tmprss4 
requires catalytic activity to activate ENaC [89, 104] and it 
has been reported that CAP2 cleaves all three ENaC 
subunits, both with and without associated stimulation [104]. 
CAP2/Tmprss4 appeared to be highly expressed in lung 

Table 1. Comparative Phenotypes of ENaC, CAP1/Prss8 and CAP3/Tmprss14 Mouse Models 

 

 
Complete Alpha ENaC 

Knock-Out 

Skin-Specific 

CAP1/Prss8 

Knock-Out 

Complete 

CAP3/Tmprss14  

Knock-Out 

Transgenic CAP3/Tmprss14  

(K5 Promoter) 

Epidermal Features hyperplasia hyperkeratosis hyperkeratosis hyperplasia, tumor formations 

Barrier Function impaired impaired impaired n.d. 

Differentiation Markers K6 over-expression filaggrin processing defect filaggrin processing defect K6 over-expression 

Tight Junctions functional Severely impaired n.d. n.d. 

Lipid Composition severely affected affected affected n.d. 

References [79, 33] [8] [7, 109] [117] 

n.d. = not determined. 
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cancer tissues compared with normal tissues and was found 
to be broadly expressed in a variety of human cancer cell 
lines, resulting in an important mediator of invasion, 
metastasis, migration and adhesion [105]. However, the 
physiological functions of CAP2/Tmprss4 remain to be 
ascertained in the whole organism by, e.g., conditional gene 
targeting models. 

 mCAP3 is identical to the mouse epithin/Tmprss14 
[106]. As CAP2/Tmprss4, CAP3/Tmprss14 is a type II 
serine protease which shares 47% homology with the mouse 
trypsinogen, 49% with xCAP1, 40% with mCAP2 and 83% 
with the human orthologue hMT-SP1 [107] also known as 
matriptase [108]. CAP3/Tmprss14 has an essential 
physiological role in profilaggrin processing, corneocyte 
maturation, and lipid matrix formation associated with 
terminal differentiation of the oral epithelium and the 
epidermis, and is also critical for hair follicle growth. In 
mice, targeted ablation of the serine protease 
CAP3/Tmprss14 leads to postnatal lethality within 48 hours, 
striking malformation of the stratum corneum, seriously 
compromised epidermal barrier function and loss of 
proteolytically processed filaggrin [7]. Interestingly, 
complete CAP3/Tmprss14 and skin specific CAP1/Prss8 
knock-out mice exhibit similar phenotypes ([7, 8, 109] and 
Table 1) and it has been proposed that CAP1/Prss8 presents 
the downstream substrate target of CAP3/Tmprss14 [110]. 
However, mice constitutively lacking CAP1/Prss8 are 
embryonic lethal (R.-P. Charles and E. Hummler manuscript 
in preparation), whereas mice deficient for matriptase/MT-
SP1 go through the embryonic development and die after 
birth indicating that these serine protease might exhibit 
tissue/organ-specific roles independent from each other [7]. 
Despite the known structural (e.g. epidermal thickness) and 
functional (e.g. sweet gland) differences between mouse and 
human skin, the human skin disease the autosomal recessive 
ichthyosis with hypotrichosis, found to be caused by 
mutation in CAP3/Tmprss14 gene [111], shows close 
similarity with the CAP3/Tmprss14 deficiency in mouse skin 
[112]. CAP3/Tmprss14 is an efficient activator of pro-
urokinase plasminogen activator (pro-uPA), hepatocyte 
growth factor/scatter factor (HGF/SF), and PAR2 in vitro, 
and CAP3/Tmprss14 could have pleiotropic functions in the 
activation of proteolytic cascades, growth factors, and G 
protein coupled receptors [113]. CAP3/Tmprss14 is 
universally co-expressed with its cognate inhibitor, 
hepatocyte growth factor activator inhibitor-1 (HAI-1) 
encoded by the serine protease inhibitor Kunitz type 1 
(Spint1), in both normal and malignant tissues [114-116]. 
Modest CAP3/Tmprss14 orthotopic over-expression in the 
skin of transgenic mice caused spontaneous squamous cell 
carcinoma and dramatically potentiated carcinogen-induced 
tumor formation (Table 1). Increasing epidermal HAI-
1/Spint1 expression completely negated CAP3/Tmprss14 
oncogenic effects [117]. HAI-1/Spint1 is a membrane-bound 
serine proteases inhibitor expressed in various epithelial 
tissues, such as the gastrointestinal tract, breast, prostate, 
lung and skin [118]. Several in vitro studies showed that 
HAI-1/Spint1 potently inhibits trypsin-like serine proteases 
such as hepatocyte growth factor activator, CAP3/Tmprss14, 
hepsin/Tmprss1, and CAP1/Prss8 [119-123]. Homozygous 
deletion of HAI-1/Spint1 in mice resulted in embryonic 
lethality attributable to impaired placental development 

[124]. High chimeric HAI-1/Spint1 knock-out newborns 
showed growth retardation and died by 16 days. These mice 
developed scaly skin because of hyperkeratinization, 
reminiscent of ichthyosis, and abnormal hair shafts that 
showed loss of regular cuticular septation. The interfollicular 
epidermis showed acanthosis and immunoblot analysis 
revealed altered proteolytic processing of profilaggrin in 
HAI-1/Spint1 deleted skin with impaired generation of 
filaggrin monomers [125] indicating an important role of this 
serine protease inhibitor for skin patho-physiology. 

 Defective ENaC processing and function has been 
observed in tissue kallikrein-deficient mice [126]. Tissue 
kallikreins are extracellular serine proteases secreted by 
keratinocytes into upper stratum granulosum and stratum 
corneum interstices of the epidermis and are also localized in 
appendages such as hair follicles and sweat glands [127-
129]. The proteolytic activity of kallikreins is regulated in 
several ways including zymogen activation, endogenous 
inhibitors, such as serpins, and via internal (auto) cleavage 
leading to inactivation. Until recently, kallikrein proteolytic 
activity in the skin was exclusively ascribed to kallikrein-5 
and kallikrein-7 (also known as stratum corneum tryptic 
enzyme, SCTE, and stratum corneum chymotryptic enzyme, 
SCCE, respectively) even though other kallikreins are 
expressed in the skin and its associated appendages [130] 
that show involvement in skin barrier functions [131]. It has 
been found increased epidermal expression of SCCE in 
psoriasis and in atopic dermatitis patients. Transgenic mice 
expressing SCCE in suprabasal epidermal keratinocytes 
develop pathologic skin changes with increased epidermal 
thickness, hyperkeratosis, dermal inflammation, and severe 
pruritus [132]. The activities of SCTE and SCCE are 
increased in SPINK5 (serine protease inhibitor Kazal-type 5, 
encoding the putative multi-domain serine protease inhibitor 
LEKTI) deficient mice, and these mice mimic the epidermal 
dysfunctions in human disease Netherton syndrome leading 
to a disruption in skin barrier function [133]. 

 It has been recently found that the purified serine 
protease plasmin from nephrotic urine activates the epithelial 
sodium channel ENaC [134] and that plasmin activates 
ENaC in association with inducing cleavage of the gamma-
subunit [135]. Plasminogen is a zymogen that is converted to 
the active enzyme plasmin by tissue plasminogen activator, 
urokinase plasminogen activator and factor XII [136]. 
However plasmin has been proposed as one of the main 
extracellular and cell surface proteases involved in wound 
healing [137] and its activity has been found significantly 
increased after disruption of the epidermal barrier [138] 
indicating additional ENaC regulators implicated in skin 
barrier function. 

CONCLUSIONS AND PERSPECTIVES 

 In conclusion, our recent results unveil the physiological 
consequences in skin of the highly amiloride-sensitive 
epithelial sodium channel deficiency that leads to distinct 
phenotypes in the prenatal versus the postnatal period. We 
propose that ENaC plays an important role in the 
maintenance of the postnatal epidermal barrier function. The 
fine tuning between activation and inhibition of serine 
proteases, which present regulators of ENaC, appear to play 
a key role in epidermal homeostasis [139]. These serine 
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proteases are known to be deregulated during tissue damage 
and thereby contribute to injury, repair, and cell survival 
responses, although the in vivo molecular targets of these 
membrane-bound serine proteases are largely unknown. The 
cellular actions of these serine proteases may be mediated 
through activation of G-protein-coupled receptors like the 
protease-activated receptors (PARs), and regulated by serine 
protease inhibitors and associated proteins. It will be 
important to identify the remaining members of these 
cascades, as well as the signals that trigger their activation. 
This delicate balance can be disturbed by genetic defects or 
exogenous influences and has been shown as the underlying 
and promoting cause for a large number of different diseases. 
Abnormalities in skin-specific knock-outs of these serine 
proteases and its comparison with ENaC-deficient mutant 
mice will give new insights into molecular mechanisms of 
the epidermal permeability barrier function, its implication in 
genetic disorders, and the identification of putative target 
proteins. Recently, we could demonstrate in vivo a crucial 
role of CAP1/Prss8 in the regulation of ENaC in the lung 
being implicated in ENaC-mediated alveolar sodium and 
water transport and fluid balance [140]. Thus, a better 
understanding of these interactions, ascertained from animal 
and human studies will help to develop novel means of 
prevention and treatment. 
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