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Abstract:

Background:

Skin cancer has been reported to be one of the most predominant forms of cancer diseases, especially amongst Caucasian descendant
and light-skinned people. In particular, the melanocytic skin lesion has been judged to be the most deadly amongst three prevalent
skin cancer diseases and the second most common form amongst young adults ranging from 15-29 years of age. These concerns have
propelled the need to provide automated systems for medical diagnosis of skin cancer diseases within a strict time window towards
reducing the unnecessary biopsy, increasing the speed of diagnosis and providing reproducibility of diagnostic results.

Objective:

This paper is aimed at using a comparative analysis method to review and compare the existing novel approaches for automating the
diagnostic procedures of melanocytic skin lesion, including their success and shortcomings. This task is particularly valuable for
decision makers to consider tradeoffs inaccuracy of diagnostic procedure versus complexity.

Methods:

A comparative study was carried out on selected literature from different accessible digital libraries of skin lesion research, especially
cancerous  moles  in  regard  to  the  convention  used,  assumptions  made,  success  recorded  and  noticeable  gaps  that  need  to  be
adequately filled by further study.

Conclusion:

Image standardization should be embraced in the medical research community to ensure the reproducibility of findings. Moreover,
efforts should be made to have a large image library of varying skin lesion samples with categories based on lesion types and making
these accessible to researchers to ensure proper benchmarking of research results.

Keywords: Computer-assisted dermoscopy, Skin lesion segmentation, Pattern recognition, Remote health diagnosis, Medical image
analysis, Computational intelligence, Melanoma skin disease, Automated diagnosis.

1. INTRODUCTION

Skin cancer has been reported to be one of the most predominant forms of cancer disease, especially amongst the
Caucasian descendant and light-skinned people. In particular, the melanoma has been judged to be the most deadly form
of skin cancer among the three prevalent skin cancer diseases and equally adjudicated as the fifth most common cancer
occurring  among  males,  seventh  most  commonly  occurring  form  of  cancer  diseases  in  females  and  second  most
common  form  of  cancer  diseases  amongst  young  adults  ranging  from  15-29  years  of  age.  These  concerns  have
compelled the need to provide medical diagnosis within a very strict time frame through the application of advances in
telecommunications-based services. Moreover, this application has been geared towards reducing unnecessary biopsy,
increasing the speed of diagnosis and providing reproducibility of diagnostic results.
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This study reviews the state-of-the-art approaches for achieving an automated skin lesion image diagnosis. Section 2
provides an overview of the anatomy of the skin in relation to the focus of the paper. The analysis of medical imaging in
fostering a good decision-making process for skin diagnosis is discussed in Section 3. The computer-aided diagnostic
system for the development of automated skin lesion diagnosis process is illustrated in Section 4. Current and state-of-
the-art  skin lesion diagnostic methods for  assisting the diagnosis  of  melanocytic lesions are reviewed in Section 5.
Homogenous  skin  lesion  diagnostic  procedures  frequently  used  in  the  research  community  are  comprehensively
discussed in Section 6. We conclude our findings with the proposed recommendation in Section 7.

2. HUMAN SKIN

The surface of human skin is a detailed landscape with complex geometry and local optical properties. The skin is
the largest organ of the human body and consists of three principal layers which are the epidermis (see 2.1 Epidermis),
the dermis (see 2.2 Dermis) and the subcutaneous layer (see 2.3 Subcutaneous). Skin features depend heavily on many
essential variables such as body location (forehead or cheek), subject parameters (age or gender), imaging parameters
(lighting  or  camera)  and  the  direction  from which  it  is  viewed  and  illuminated.  Bacterial  and  viral  skin  infections
generally affect the human skin by decolourizing and distorting the pigmented skin areas which make the automation of
medical image analysis difficult [1].

2.1. Epidermis

The epidermis is a layered scale-like tissue which serves as a protection against external belligerences (extreme
radiation,  wounds  and  contaminations).  The  epidermis  consists  of  four  types  of  cells,  which  are  Keratinocytes,
Melanocytes,  Langerhans  and  Merkel  cells.

2.2. Dermis

The  dermis  is  composed  of  collagen  and  elastic  fibres.  The  dermis  has  two  primary  sub-layers  which  are  the
Papillary dermis (thin layer) that acts as a glue to hold the epidermis, and the dermis and Reticular dermis (thick layer)
that supplies energy and nutrition to the epidermis. It contains nerve endings, sweat glands, hair follicles, blood vessels
and lymph vessels. In addition, it is responsible for healing and sense of touch.

2.3. Subcutaneous

The subcutaneous layer is responsible for supplying nutrients to the other two layers. The subcutis, being made of
made of fat and connective tissue that helps to cushion and insulate the body.

3. MEDICAL IMAGING OF THE SKIN

The principal aim of image analysis is to use image processing techniques to provide a machine interpretation of an
image,  typically  in  a  format  that  could  foster  effective  decision-making  process.  Interestingly,  while  the  merit  of
medical imaging is getting popular, the World Health Organization (WHO) reported in one of its findings that three
quarters of the entire world population is yet to have access to medical imaging, which is an essential technique in the
new age of telemedicine such as in automation of skin disease diagnosis [2]. Hitherto, medical imaging has contributed
immensely towards advancing medical procedures. However, one notable challenge is that interpretation and analysis of
medical imaging results are still heavily dependent on medical experts whose availability is low or non-existent for
developing and underserved regions (especially rural settings).

The fundamental task of medical imaging of the human skin is the segmentation of a mole that provides essential
output for the mole feature extraction and mole classification. A mole is a skin lesion that essentially results from the
local proliferation of pigment cells (melanocytes). Due to its root in melanocytes, it can sometimes be referred to as
melanocytic nevus (naevus). Typically, a mole can be congenital or acquired. Congenital melanocytic nevi are present
at birth and sometimes referred to as a birthmark in some regions. Congenital moles are often classified based on size.
Three  main  types  of  congenital  moles  include  small-size  nevi,  medium-sized  nevi  and  giant-sized  (garment)  nevi.
Acquired melanocytic nevi generally appears at a later stage in childhood or adult life because of several reasons such
as unprotected exposure to sun radiation, immune status, genetic factors and at times from unpredictable adverse event
from medication [3]. Mole transformation from nevi into cutaneous melanoma has been reported in the literature to
increase  with  age,  especially  the  dysplastic  nevi  [4,  5].  A benign  mole  might  grow to  be  cutaneous  for  1  in  every
200000 male and female under the age of 40, as well as for 1 in 33000 for males older than 20 years of age [4]. While
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most  moles  occurring  in  adolescents  might  not  transform  into  cutaneous  melanoma  [4],  it  has  been  reported  that
precautions need to be taken for scheduled examination on suspicious moles because some malignant melanoma might
masquerade clinically as benign lesions [6, 7].

A skin lesion could also be categorised as pigmented or non-pigmented, based on its colour resulting from melanin,
blood or exogenous pigment. While most Pigmented Skin Lesions (PSL) are melanocytic (benign moles or malignant),
some  have  been  reported  to  be  non-melanocytic  [8,  9].  Most  moles  could  be  said  to  be  benign  (not  harmful).  A
cancerous  mole,  however,  is  malignant  (life-threatening).  Some  reports  have  argued  that  a  number  of  malignant
melanomas stem from the preexisting benign nevi [4, 10].

Pathologically, melanocytic nevi are often classified based on the location reference of the nevi cells in the skin.
Dermal or intradermal nevi are associated with nevus cells located in the dermis. Junctional nevus refers to a flat mole
affiliated with nevus cells located at the junction of the epidermis and dermis. Compound nevi have nevus cells at the
epidermal-dermal junction and equally within the dermis. The usage of dermoscope in the process of dermatoscopy has
introduced the classification based on pigment patterns. A starburst nevus reflects radial lines around the periphery of a
skin lesion. Blue nevi refer to uniform but structure less skin lesions that are steel blue in colour. Other common nevi
include spitz, reticular, globular, eclipse, dysplastic (atypical), fried egg, lentiginous and cockade nevus.

Early detection of malignant moles is one of the essential keys to prevent untimely death resulting from skin cancer
diseases  [11  -  28].  The  three  prevalent  skin  cancers,  according  to  the  literature  are  Basal  Cell  Carcinoma  (BCC),
Squamous  Cell  Carcinoma  (SCC)  and  Melanoma.  The  incidence  of  skin  cancer  diseases  such  as  BCC,  SCC  and
Melanoma  has  also  been  seen  to  increase  rapidly  throughout  the  world  and  it  is  gradually  becoming  one  of  the
predominant forms of cancer  diseases,  especially in  Caucasian population  countries and  among fair-skinned  people
[29 - 31]. Skin cancer incidence is on the order of 10 to 12 in Europe, 18 to 20 in the United States, and 30 to 40 in
Australia per 100000 subjects [32]. The Australian Institute of Health and Welfare (AIHW) and Australian Association
of Cancer Registries (AACR) detailed that more people have had skin cancer disease than all other cancer diseases
combined in the past three decades [33]. Robinson [34], reported that 1 in 5 Americans develops skin cancer in the
course of a lifetime. It has been reported that approximately 40%-50% of Americans who live up to the age of 65 have a
high risk of having either BCC or SCC at least once [35].

Melanoma is a skin cancer typically resulting from an unpredictable disorder in the melanocytic cells, thus causing
improper synthesis of the melanin. While melanoma might account for the least amongst the three aforementioned skin
cancer types, it has, however, been umpired to account for 75-79% of skin cancer related deaths [29, 36]. The literature
records that Melanoma is the fifth most common cancer occurring amongst males, seventh most commonly occurring
cancer in females, and second most common form of cancer amongst young adults ranging from 15-29 years of age [37,
38].  Melanoma,  which  is  currently  the  third  prevalent  cancer  in  Australia,  was  reported  to  occur  in  61.7  for  every
100000 Australian men and 40.0 for every 100000 women [33]. In the same study, melanoma of the skin was judged to
have accounted for 22800 Disability-Adjusted Life Years (DALYs) in Australia. DALYs depict years of healthy life
lost either because of premature death or through living with illness or injury-bound disability.  The study made by
American Cancer Society (ACS) [36] has revealed that  at  least  1 person would likely die every hour as a result  of
melanoma.  Similarly,  the  study  [33]  reported  that  melanoma  of  the  skin  accounts  for  22800  DALYs  in  Australia.
DALYs refer to years of healthy life that have otherwise been lost either as a result of illness or premature death. It has
been projected that melanoma would have caused 10130 deaths in the year 2016 [36] and 9730 deaths are predicted for
2017 [39].

The incidence of cutaneous melanoma in Caucasian patients has been reported to increase historically in most parts
of the world over the decades [40 - 42]. In Europe for instance, it has been reported that malignant melanoma incidence
is steadily increasing by 5% year-on-year, and it is responsible for 91% of skin cancer deaths [31]. Amazingly, most
incidents are reported in the literature among Caucasians, but some reports state that black Africans and Asians account
for 20% of the world melanoma [43, 44]. Tuma et al. [45], however, argued that the African descendant population is
rarely affected by melanoma because an average of 1.1 out of 100,000 persons per year has an incidence of melanoma.
Though most reports of melanoma have majorly reflected an infection rate among Caucasians, the overall five-year
melanoma survival rate for African-Americans and other people of colour is only 77% compared to 91% for Caucasians
[46]. A fact sheet report compiled by Cancer Association of South Africa (CASA) [47] has stated that South Africa has
the second highest incidence of skin cancer in the world after Australia.

Gruesome reports as highlighted above have led to many advances in computer-aided systems towards assisting
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dermatologists to administer the diagnosis of skin-related diseases. The development of automated diagnosis systems
that are capable of performing some level of remote diagnosis of skin cancer diseases such as melanoma and basal cell
carcinoma  and  equally  assisting  physicians  in  various  imaging  tasks  have  gained  tremendous  attention  in  the
bioinformatics  and  computer  vision  research  [48].

The efforts towards the automation of diagnostic procedures are geared mainly to improve the speed of diagnosis
and to increase reproducibility  of  results.  The automated diagnosis  has helped in reducing the first-time diagnostic
errors, which sometimes could be as much as 40% [49, 50].

4. COMPUTER-AIDED DIAGNOSTIC SYSTEMS

In the past decades, the literature has reported advances in computer-aided diagnostic systems that provide a more
manageable solution. These propositions are geared towards the development of automated systems that are less prone
to possible bias and that are often introduced in the process of diagnosis by medical experts, whose availability is low
and sometimes do not exist in underserved communities [51 - 53]. A strong impulse has been seen in the literature to be
given to the development of automated systems capable of assisting physicians in medical imaging tasks [48]. However,
the presence of noise, masking structures, variability of biological shapes and tissues, and imaging system anisotropy
make the automated analysis of medical images a hard task [42, 48, 51].

One of the best approaches to overcome the aforementioned challenges in automating medical imaging diagnosis is
to exploit some kind of hypothetical information about the imaged structures. The information about the structures to be
analysed can be anatomical knowledge about their typical appearance (such as shape and grey levels) and position or it
can be statistical knowledge of their properties such as grey level of the tissues included in those structures. The images
can then be classified using their morphological structure, colour, fractal and texture properties. Laws [54], transformed
digital images to identify regions of interest and provided an input data set for segmentation and features detection
operation. In the same study [54], operations such as thresholding, morphological analysis and texture detection were
used in order to divide a digital image into individual objects to perform a separate analysis of each region.

Over the years, it has been reported that an automatic data analysis used for melanoma showed a higher diagnostic
performance compared to an observation by a physician in terms of sensitivity (proportion of true positives), though
lower  in  terms  of  specificity  (proportion  of  true  negatives)  [29,  55  -  57].  (Fig.  1)  highlights  the  frequently  used
evaluation metrics to determine the effectiveness of the diagnostic results. A common technique used for the foregoing
automated data analysis is Dermoscopy or Epiluminiscence Light Microscopy (ELM). It is an in-vivo, non-invasive
technique that in recent years has disclosed a new dimension of the clinical morphological features of Pigmented Skin
Lesions  (PSLs)  using  different  light  magnification  systems  [29].  Dermoscopy  can  be  based  on  non-polarized  light
techniques that require liquid interface or direct skin contact or polarized light techniques [58]. For the past decades,
dermoscopy has been a major tool used by the dermatologists to proffer early detection of skin cancer-related cases,
thus lowering the number of excisions and consequently impacting the clinical management of PSLs [59]. Dermoscopy
provides dermatologists with a higher accuracy for detecting suspicious cases than it is possible with popular practice of
naked-eye inspection [56, 60]. In addition, dermoscopy has been observed to aid the diagnosis of several other skin
tumours  such  as  Angiomas,  Basal  Cell  Carcinomas,  Cylindromas,  Seborrheic  Keratosis,  and  Hematomas,  just  to
mention a few. In relation to the malignancy classification of melanocytic images, the ELM has been a great tool for
dermatologists distinguish between life-threatening (malignant) and benign melanocytic lesions. The trend identified in
the literature is the increase in the adoption of dermoscopy, primarily because of its ease of use, non-invasive approach,
and slow adoption of other advance diagnostic technologies by many dermatologists. A recurring challenge, however,
with the usage of dermoscopy is the complexity and subjectivity that characterize the interpretation of its results [41, 42,
57, 61, 62]. The poor reproducibility of an analysis made with the usage of the technique is also a concern.

The development of automated diagnostic systems for skin lesion screening has provided promising reproducibility
of diagnostic results, and an increase in the speed of diagnosis procedures [42, 63, 64]. In addition, the application of
automated diagnosis has assisted to reduce the first-time diagnostic error which can be as much as 40% [49, 50] and
mis-pathology cancerous analysis [65]. Proposed automated diagnosis techniques in the literature are essentially based
on different diagnostic checklists and rules such as the Asymmetry, Border Irregularity, Colour (ABCD) variation and
diameter of lesion [14], modified ABC-point list of dermoscopy [66], pattern analysis [67], ELM 7-Point checklists
[15], and Menzies score [68].
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Fig. (1). Evaluation Metrics.

5. SKIN LESION DIAGNOSTIC METHODS

The literature generally shows that several methods for skin lesion diagnostic have been proposed to assist in the
diagnosis of melanocytic lesions over the years. Prominent among these methods are Pattern Analysis for Microscopic
Images  (PAMI)  [67],  the  ABCD  criteria  for  macroscopic  images  [11],  the  ABCD  rule  of  dermoscopy  [14]  for
microscopic images, the ABCDE criteria [19] for macroscopic images, ABCDE rule [12], Glasgow 7-point checklists

 

 True Positive (𝑇𝑃) - correctly identified subject against a particular criteria in a given set of subjects 

 False Positive (𝐹𝑃) - incorrectly identified subject against a particular criteria in a given set of 

subjects 

 True Negative (𝑇𝑁) - correctly rejected subject against a particular criteria in a given set of subjects 

 False Negative (𝐹𝑁) - incorrectly rejected subject against a particular criteria in a given set of 

subjects 

 Sensitivity (𝑆𝑛) - statistical measurement of the percentage of proportion of true positive  

𝑆𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100% 

 Specificity (𝑆𝑝) - statistical measurement of the percentage of proportion of true negative 

𝑆𝑝 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 × 100% 

 Likelihood Ratio Positive:   𝐿𝑅+ =
𝑆𝑛

1−𝑆𝑝
 

 Likelihood Ratio Negative: 𝐿𝑅- =
1−𝑆𝑛

𝑆𝑝
 

 Positive Predictive Value:  +𝑃𝑉 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

 Negative Predictive Value - 𝑃𝑉 =
𝑇𝑁

𝑇𝑁+𝐹𝑁
 

 

 
Ground Truth  

Positive Negative 

Test 

Result 

Positive True + False + = +𝑃𝑉 

Negative False - True  - = -𝑃𝑉 

      ||       ||   

 𝑆𝑛 𝑆𝑝 

 

 Diagnostic Accuracy:      𝐷𝐴 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

 

 Jaccard Index (𝐽): Statistically compares similarity and diversity between Training data set (𝑇𝑟𝐷) and 

Test data set (𝑇𝑠𝐷)   

 𝐽(𝑇𝑟𝐷, 𝑇𝑠𝐷) =
𝑇𝑟𝐷 ∩ 𝑇𝑠𝐷

|𝑇𝑟𝐷|+ | 𝑇𝑠𝐷|− (𝑇𝑟𝐷 ∩ 𝑇𝑠𝐷)
        =          

𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
 

 Dice Coefficient (𝐷𝑆𝐶): Statistically compares similarity between Training data set (𝑇𝑟𝐷) and Test 

data set (𝑇𝑠𝐷)   

 𝐷𝑆𝐶(𝑇𝑟𝐷 , 𝑇𝑠𝐷) =
2(𝑇𝑟𝐷 ∩ 𝑇𝑠𝐷)

|𝑇𝑟𝐷|+ | 𝑇𝑠𝐷|
        =         

2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
 

 

NOTE: 

High Sensitivity and Specificity indicates high performance of a given method 

Likelihood Positive ratio greater than 1 with Likelihood Negative ratio less than 1 reflect the subject 

associate well with the specified criteria (such as classification or segmentation) 

 High Positive and Negative Predictive Value indicates high-performance of a given method 

 

 



A Review of Prevalent Methods The Open Dermatology Journal, 2018, Volume 12   19

[13,  69]  for  macroscopic  images,  ELM  7-point  checklists  [70]  for  microscopic  images,  Menzies  score  [68]  for
microscopic  images,  7  features  for  melanoma  [71],  Modified  ABC-Point  (MABCP)  list  of  Dermoscopy  [66]  and
Colour, Architecture, Symmetry, and Homogeneity (CASH) algorithm [72, 73].

The quantitative pattern analysis proposed by Pehamberger et al. [67], is based on detailed qualitative assessment of
the numerous individual ELM criteria and typically requires a significant degree of formal training. Pattern analysis
categorises specific patterns as global (reticular, globular, homogeneous, parallel) or local (pigmented network, dots,
streaks, globules, blotches). The ABCD criteria proposed by Friedman et al. [11] employs a semi quantitative counting
classification based on the evaluation of asymmetry of overall lesion shape, border irregularity, colour variation and
diameter of lesion of minimum of 6mm. The ABCD rule of dermoscopy initially suggested by Stolz et al. [14] and later
standardized in Argenziano et al. [52] uses similar measures in relation to the criteria defined by Friedman et al. [11],
although different. Stolz et al. [14] have highlighted the key features of diagnosing a skin lesion. These features include
asymmetry  properties  of  the  specific  lesion  (contour,  colour  and  structures),  unexpected  border  sharpness,  colour
variegation of 1 to 6 predefined colours (white, red, light brown, dark brown, blue-grey, black) and the inclusion of 5
differential  dermoscopic  structures  (network,  structure-less  or  homogeneous  areas,  branched  streaks,  dots,  and
globules). It was recommended that white colour should be only counted if the area is lighter than the adjacent skin. A
Total Dermoscopic Score (TDS) of 4.75 or less signifies a benign melanocytic lesion, a score ranging from 4.8 to 5.45
denotes a suspicious lesion, and a TDS of more than 5.45 symbolizes malignancy.

Blum et  al.  [66]  debated  the  need to  simplify  the  criteria  used  in  identifying  malignant  lesions.  The  simplified
procedure termed as ABC-point (ABCP) list was formulated based on the concept of the ABCD rule of dermoscopy
[14], Menzies score [68], and the modified ABCD rule by Kittler [56]. The simplicity of the ABC-point list for lesion
evaluation  is  a  great  benefit,  however,  there  exist  some  concerns  about  its  sensitivity  and  accuracy.  The  CASH
algorithm for dermoscopy proposed by Henning et al. [72] suggested that architectural order of lesion could be the most
important features in distinguishing between malignant and benign melanocytic lesions. The comparative study carried
out for CASH and state-of-the-art methods (Menzies score, ABCD rule of dermoscopy and ELM 7-point checklists)
reported a comparable result [73].

Recently,  a  modified  4-points  algorithm  designed  on  the  success  of  ABC-point  list  has  been  proposed,  whose
accuracy is similar to the CASH algorithm and similar in simplicity to the 3-point checklist [74]. The 4-point algorithm
uses  the  existing  criteria  from  the  ABC-point  list  and  adds  another  criterion  by  doubling  the  symmetry  parameter
criterion. The algorithm certainly looks promising, it might however be difficult to really ascertain the superiority of the
algorithm  over  the  ABC-point  list  and  CASH,  given  the  small  sample  size  on  which  it  was  tested.  Moreover,  the
validation of this new algorithm is yet to be discussed in the literature.

The  Glasgow  7-point  checklists  which  was  first  discussed  by  Mackie  [13]  before  being  popularized  [69]  uses
change in shape, size and colour of skin lesions as its major criteria, while lesion inflammation, crusting or oozing,
sensory change or Pruritus and minimum diameter of 7mm were used as minor criteria. While the Glasgow 7-point
checklist has shown good adoption in clinical practice, there have been some concerns about its application in early
lesion  detection  as  well  as  its  sensitivity  and  capability  [15,  75].  Walter  et  al.  [76]  argued  that  the  application  of
weighted revised version of the 7-points checklist, with a cut-off score of 4 rather than 3 performs considerably better
and could thus be applied in general practice towards supporting recognition of clinically significant lesions as well as
early identification of melanoma. ELM 7-point checklist proposed by Argenziano et al. [70] and endorsed in Malvehy
et al. [61] uses 3 major criteria and 4 minor criteria, with each major criterion having a score of 2 points, whereas each
minor criterion is given 1 point.  A minimum total score of 3 is required for the diagnosis of melanoma. The major
criteria used in the ELM 7-point checklists include atypical pigment networks, atypical vascular patterns and blue-white
veil, while the minor criteria consist of irregular streaks, irregular globules or dots, irregular blotches and regression
structures.

Contrary to the general adoption of the ABCD criteria for macroscopic image evaluation, there have been a number
of  concerns  regarding  the  unwarranted  biopsy  because  of  misdiagnosis  resulting  from morphological  overlap  with
dysplastic nevi. The relevance of the metrics such as Diameter (D) identifier from the ABCD criteria on melanoma
having diameters less than 6mm or on thin melanoma (≤1 mm) has also been questioned [19, 77 - 82]. Whiteman et al.
[83]  recently  validated  this  assumption  by  arguing  that  more  melanoma  deaths  were  attributable  to  thin  tumours
(≤1 mm) than thick tumours (>4 mm) in Queensland, Australia.

The  discussions  by  Zaharna  &  Brodell  [84]  as  well  as  by  Liu  et  al.  [85]  reasoned  that  change  in  lesion
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characteristics  is  one  of  the  most  important  diagnostic  features  reported  by  patients  towards  early  detection  of
melanoma. This inference further validates the choice of variegation in size, shape, and colour as major criteria for
Glasgow 7-point checklists. The literature has thus seen various proposals for additional measures to complement the
ABCD criteria. Fitzpatrick et al. [12] discussed the importance of expanding the ABCD criteria to ABCDE by studying
the elevation (E) of lesion for early melanoma detection. The study by Rigel & Friedman [86] and Thomas et al. [87]
agreed on the need for the addition of identifier E to represent enlargement of lesion relative to other neighbouring
lesion for optimizing the sensitivity and specificity of lesion diagnosis. Hazen et al. [16], equally suggested yet another
similar criterion: E for evolutionary changes in lesion colour, including surrounding erythema and hyper-pigmented
halo,  size,  pruritus,  pain,  surface characteristics,  bleeding,  symmetry and tenderness.  To avoid misinterpretation of
terms and to further ease distinguishing between melanoma and benign pigmented lesions, Abbasi et al. [19] proposed a
more encompassing and simple criterion named evolving (E) to emphasize changes in lesion characteristics over time.
Abbasi et al. [19] argued that the usage of E to represent lesion elevation (proposed by Fitzpatrick et al [12]) would be
misleading since substantial elevation might not be apparent especially in early melanomas. In addition, there has been
a recent discussion on the replacement of Diameter (D) in the ABCDE with lesion darkness (D) for early melanoma
detection [26].

The Ugly Duckling (UD) sign introduced by Grob & Bonerandi [88] has also been seen as a major insignia for
spotting the possible presence of melanoma. The UD sign signifies suspected lesions that appear different from other
benign lesions examined in the same patient. The validity of the UD sign was inspected in Grob et al. [89] as a useful
tool  for  lesion  expert  towards  second  diagnosis  opinion  as  well  as  for  general  population  when  performing  self-
examination. The UD sign has influenced a number of research efforts towards early detection of malignant lesions.
Hazen et al. [16] used the basis of UD sign to argue that it is beneficial to add another criterion of F (funny looking
lesions) to the established ABCDE criteria. Similar argument to expand ABCDE to ABCDEF was recently discussed by
Jensen  & Elewski  [90]  to  improve  patient  self-screening  examination,  which  has  been  applied  as  a  useful  tool  for
physicians in identifying worrisome melanocytic lesions. The progressive increase in letter addition to the established
ABCD criteria  has been seen to have contributed to the handling of  edge case skin lesion diagnosis  as  highlighted
above. However, it has also been sometimes criticized [91].

The 7 features for melanoma developed by Dal Pozzo et al. [71] include dermoscopic features that can aid screening
of pigmented skin lesions. 4 of these features are considered major, each with the score of 2, while the remaining 3
features  are  classified  as  minor  features  with  a  score  of  1.  The major  features  include regression erythema (white-
pinkish depigmented area), radial streaming, grey blue veil, and irregularly distributed pseudopods. Inhomogeneity of
two or more dermoscopic features, irregular pigment network and sharp margin all constitute the minor features. The 7
features for melanoma use a scoring system similar to ELM 7-point checklists however differ in the criteria.

Menzies  et  al.  [68],  discussed  11  features  required  to  successfully  diagnose  a  skin  lesion.  2  of  the  features  are
tagged negative, while the remaining 9 are positive. The negative features include symmetry of patterns and singular
colour (either of black, grey, blue, dark brown, tan and red). The positive features include blue-white veil, multiple
brown  dots,  pseudopods,  radial  streaming,  scar-like  depigmentation,  peripheral  black  dots/globules,  multiple  (5-6)
colours,  multiple  blue  or  grey  dots  and  broadened  network.  According  to  Menzies’  score,  a  lesion  is  considered
melanoma if it contains 1 or more of the positive features and none of the negative features.

In a bid to effectively recognize acral melanoma that does not exhibit the parallel ridge pattern, Lallas et al. [92]
recently proposed irregular Blotch, parallel Ridge pattern, Asymmetry of structures, Asymmetry of colours, parallel
Furrow  pattern  and  Fibrillar  pattern  (BRAAFF)  as  a  new  checklist  to  improve  diagnostic  sensitivity  of  the  acral
melanoma.  The BRAAFF checklist  is  composed of  four  positive of  irregular  blotches,  ridge pattern,  asymmetry of
structures and asymmetry of colours and two negative predictors of furrow pattern and fibrillar pattern.

A comparative analysis made by Annessi et al. [93] on three of the algorithmic methods (Pattern Analysis, ABCD
rule  and  7-Point  Checklists)  using  198  equivocal  melanocytic  lesions  revealed  that  Pattern  Analysis  was  the  most
sensitive (85.4%) and specific (79.4%) in identifying Thin Melanoma (TM), followed by ABCD rule. Comparative
performance of 4 dermoscopic algorithms (pattern analysis,  the 7-point checklist,  the ABCD rule,  and the Menzies
method) by non-experts for the diagnosis of melanocytic lesions lauded Menzies method for producing the highest
diagnostic accuracy [94]. Over the years, dermatologists have been using both ABCD criteria as well as the ABCD rule
as  a  standard  for  classifying  Pigmented  Skin  Lesion  (PSL)  as  benign,  suspicious  or  life  threatening  (malignant)
primarily because of their simplicity and efficient approach [66, 95, 96].
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It is important to note that the rules that target microscopic (dermoscopic) images differ from that of macroscopic
(clinical) images even in the areas where similar terms are shared. The ABCD criteria [11] for macroscopic images
differ from ABCD rule of dermoscopy [14] for microscopic images. The identifier ‘B’ in the study of Friedman et al.
[11] refers to border irregularity, whereas the same identifier reflects border sharpness in the study of Stolz et al. [14].
In  addition,  identifier  ‘D’  refers  to  differential  structure  for  microscopic  images,  whereas  it  generally  represents
diameter  greater  or  equal  to  6mm in  macroscopic  images.  These  consequently  filter  down  to  the  popular  ABCDE
criteria [19] and likewise the ABCDE rule [12]. Similarly, the different criteria highlighted above for both macroscopic
bound Glasgow 7-point  checklists  discussed by Mackie  & Doherty  [69]  and the  microscopic  bound ELM 7-Points
checklists proposed by Malvehy et al. [61] showed a clear distinction between criteria and checklists used in both the
procedures.

Most articles in the literature generally use either of aforementioned methods in speculating lesion classifications.
This speculation is often accompanied with the assumptions that malignant moles are pigmented. However, there has
been an increase in the reports of non-pigmented skin tumours [97 - 100]. This suggests a more careful approach and
systems that need to be instituted to resolve such cases to curtail potential fatality. It should also be noted that some
types  of  melanoma  (amelanotic)  have  been  reported  to  be  clinically  and  dermoscopically  featureless  resulting  in
misdiagnosis during both clinical examination and dermoscopy screening [101].

6. HOMOGENOUS SKIN LESION DIAGNOSTIC PROCEDURES

To achieve a reproducible diagnosis, the research community has frequently used a number of standard automated
procedures  for  improved  diagnosis  of  Pigmented  Skin  Lesions  (PSL)  and  its  non-pigmented  counterpart.  These
procedures include skin lesion image acquisition and preprocessing; lesion segmentation from surrounding healthy skin,
extraction of selected features and classification of skin lesions.

6.1. Skin Lesion Image Acquisition and Preprocessing

Results of diagnosis reported in the literature have been judged to be highly dependent on the volume and quality of
images used [29, 102, 103]. Often, variations in devices used in capturing lesion images and conditions under which
these images are acquired have been observed to adversely affect the results of automated skin lesion diagnosis. In the
time past, the source of image data for lesion screening was colour slides. However, over the past decades, it has been
proven  that  quality  and  accurate  diagnosis  can  be  achieved  using  digitized  lesion  images  [104  -  106].  The  two
predominant dermatological image types are macroscopic (clinical) and microscopic (dermoscopic) images. While the
use of digitised dermoscopic images is on the increase, some reports have argued that pertinent distinguishing image
features (diminishing textures and pored) are easily examined using macroscopic images rather than under dermoscopic
images [107].

The literature has reported several  imaging techniques that  could assist  in the acquisition and screening of skin
lesion images [108 - 110]. One of such popular technique is dermoscopy which provides in-vivo, non-invasive imaging
of skin lesion using different light magnification systems [14, 17, 45, 52, 56, 58 - 61, 66, 67, 111 - 131]. Other notable
imaging techniques include digital photography [108, 110, 131 - 134], radiography [110, 135], confocal microscopy
[80,  108,  115,  133,  136  -  148],  tomography  such  as  computed  tomography,  positron  emission  tomography,
photoacoustic  tomography,  optical  coherence  tomography  and  magnetic  resonance  imaging  [108,  110,  149  -  172],
ultrasound imaging [108, 110, 173 - 180], multispectral imaging [108, 181, 182] and thermal imaging (thermography)
[183  -  186].  A  review  of  non-invasive  imaging  techniques  was  recently  discussed  by  Menge  &  Pellacani  [109],
detailing  the  application  of  various  imaging  techniques  and  the  accompanying  shortfalls.  Arguably,  due  to  slow
adoption of advances in diagnostic technology by many dermatologists, the trend noticed in the literature is a growing
increase of the usage of dermatoscopy (Dermoscopy). Recently, the usage of dermatoscope with mobile phone camera
has also been discussed in some studies for making acquisition of lesion images easier  [28,  187,  188].  Reflectance
microscopy has equally been dubbed to give good result against the light coloured melanoma lesions [80].

While each individual imaging method has produced a promising result in the screening of lesions, there has been a
rise in the mixture of imaging methods to enhance sensitivity, specificity and accuracy of lesion screening [151, 152,
189, 190]. This is further validated by Mohr et al. [191] and Reinhardt et al. [153] and recently by Bourgeois et al.
[170] that the combination of Positron Emission Tomography and Computed Tomography (PET/CT) revealed a better
sensitivity in staging of malignant tumours. Wang et al. [173] equally argued that integrating photoacoustic tomography
with  ultrasound  has  yielded  a  better  specificity  when  compared  to  when  either  method  was  used  in  isolation.  The
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combination of confocal and photo thermal microscopy was recently discussed by He et al. [192] for noninvasive and
label  free  3-D  imaging  of  melanoma.  A  good  review  was  conducted  by  Dancey  et  al.  [110]  to  compare  various
techniques used in imaging melanoma, and consequently recommended a choice of imaging techniques based on their
applicability, accuracy and cost. In the review [110], it has been suggested that ultrasound imaging (ultrasonography) is
the most effective mode of screening in the absence of sentinel lymph node biopsy. A similar view was shared by Xing
et al. [189] during the comparison made between the usage of ultrasonography, CT, PET and PET/CT in staging and
surveillance of melanoma patients.

In  image  processing,  commonly  used  colour  spaces  include  Red-Green-Blue  (RGB  and  sRGB),  Commission
Internationale de l'Eclairage (CIE L*a*b, CIE L*u*v and CIE X*Y*Z), Luma plus chrominance (Y’CbCr, Y’PbPr,
Y’UV and YIQ) and Hue-Saturation-Intensity-Value-Luminance (HSI, HSV/B and HSL). Most digitized lesion images
are  commonly  generated  as  RGB.  However,  because  of  device  dependency  of  RGB  colour  space,  digitized  lesion
images are often converted to greyscale or blue channel for single channel (scalar) processing in order to represent the
intensity of the image. In a bid to ease the accuracy of classification, Dobrescu et al. [48] converted each image used in
their study to 256 grey levels image of the same size as a form of preprocessing of the image in Hue Saturation Value
(HSV) colour space. Multichannel (vector) processing can equally be used to take advantage of the original colour
information of the lesion. The main challenge, however, with the use of vector images is the computational requirement.
Gómez et al. [193] argued that it is implausible that a particular colour space is optimal across different dermoscopic
images  acquired  via  different  systems,  even  though  the  images  have  similar  prognosis.  Some  reports  [194  -  196],
however, revealed that CIE L*a*b colour space produced a convincing result compared to its counterparts (CIE L*u*v
and CIE X*Y*Z) and the popular YCbCr colour space when performing preprocessing of multichannel microscopic
lesion images.

The term preprocessing in  lesion image diagnostic  procedures  usually  encompasses  lesion image enhancement,
image restoration with neighbourhood pixels and artefact removal [197]. The conditions surrounding the acquisition of
lesion  images  generally  influence  possible  discriminating  features  that  can  be  extracted  from  such  images  for  the
purpose of automated diagnosis. Rahman et al. [198] reasoned that retrieval and the classification tasks of lesion could
be  challenging  when  images  collected  from  separate  data  sets  are  captured  by  different  devices  under  varying
conditions (such as lightening). This creates a non-uniform illumination pattern, thus confusing diagnostic procedures.
Colour calibration of image acquisition device has been one of the approaches proposed in the literature to resolve such
challenges [199 - 205]. Low contrast of lesion images could also make isolation of lesion a very difficult task [206].
Abbas et al. [195] proposed enhancing lesion image contrast by adjusting and mapping the intensity values of the lesion
pixels in the specified range in CIE L*a*b colour space. One major flaw of contrast enhancement is over amplification
of  noise  in  the  region  having  relatively  small  intensity  range.  The  use  of  Contrast  Limited  Adaptive  Histogram
Equalization (CLAHE) might be applied to address such limitations [207, 208]. (Figs. 2 and 3) respectively illustrate
the normal and filled histogram of the image shown in (Fig. 4 and 5) shows an equalized histogram of the same image
in (Fig. 4) for better noise removal resolution.

A major hindrance to a successful diagnosis in medical skin imaging is the presence of artefacts, typically referred
to as noise. Artefacts such as hair shaft (Figs. 6 and 7), dermoscopic gels, thin blood vessel, shadows, ruler marking,
specular reflections, vignetting and air bubble can confuse diagnosis and impede achievement of better accuracy in
automated diagnosis process [107, 209 - 211]. To resolve the challenges posed by these artefacts, the literature report
the use of a number of approaches which consist primarily of artefact detection (Fig. 5) and subsequent artefact removal
(Fig. 4). Methods used for aiding the detection of artefact include filtering (curvilinear matched, Prewitt, Gaussian,
median and bilateral), derivative of Gaussian, morphology operations (closed based top hat) and anisotropic diffusion.
Filtering is a popular method to smooth a lesion image before detecting artefacts. Bilateral filtering has been seen to
perform very well amongst other types of filtering because of its edge-preserving smoothing operation on the lesion
images, especially on microscopic images [194]. Karkunen-Loéve is another method often used to preserve artefact
edges during image smoothening. Prominent among the artefact removal methods is the linear interpolation [212, 213].
This was popularized in the demonstration of the system named DullRazor that was proposed by Lee et al. [213] to
remove hair artefacts from a given lesion image. Other commonly used artefacts removal methods include inpainting
(partial differential equation, exemplar-based, fast marching) [214 - 219] and region growing [107, 220]. A promising
method called lacunarity algorithm which is  a  measure of  transitional  invariance for  computing aspects  of  patterns
exhibiting scale-invariant changes in the structure was equally proposed by Gilmore et al. [96] to avoid the need for a
more sophisticated method.
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The hair shafts and ruler marking appear to be the most common artefacts reported in the literature [210, 214, 221 -
226]. In our study, we observed that much effort has been given to the removal of hair shaft and ruler markings from
lesion  images  [107,  209,  210,  213,  214,  220,  225,  227].  An  excellent  review  by  Abbas  et  al.  [55]  discussed  a
comparative  study  of  the  state-of-the-art  algorithms  for  automatic  detection  of  hair  and  restoration,  vis-à-vis  their
applicability to the texture-part of lesion images. A novel algorithm comprising of morphological and fast marching
schemes was also suggested in a study [55].  Similar  procedure of using fast  marching inpainting was discussed by
Okuboyejo et al. [194] towards improving the speed of preprocessing of dermoscopic lesion images. Toossi et al. [228]
also suggested the usage of multi-resolution coherence transport inpainting based on wavelet-based structure for the
removal of hair artefacts in dermoscopic images. The algorithm proposed in a study [228] combines simple coherence
transport  inpainting  with  a  wavelet  decomposition  and  reconstruction  method  in  an  iterative  and  multi-resolution
structure.

6.2. Lesion Image Segmentation

The  successful  segmentation  of  skin  lesion  from  the  healthy  surrounding  skin  is  a  pertinent  requirement  for  a
workable  lesion  diagnostic  process.  The  analysis  of  a  number  of  the  dermoscopic  features  (asymmetry,  border
sharpness) and clinical features (asymmetry, border irregularity) is only as accurate as the estimated lesion boundary.
The variations in human interpretation of manual lesion boundary tracing have equally influenced the automation of
lesion segmentation procedure [229, 230]. According to the literature, the estimation of lesion border by dermatologists
has been reported to depend upon higher-level knowledge, leading to poor reproducibility of segmentation results [231].
However, Silletti et al. [232] argued that with exception of the Fuzzy C-Means (FCM), some state-of-the-art automatic
segmentation methods performed poorly when compared with segmentation carried out by expert dermatologists. In
Fig. 8), an example is shown on a segmented lesion image that has been localized from its surrounding healthy skin.

The segmentation task has sometimes been referred to as one of the most difficult tasks in medical imaging. Among
other concerns, the difficulty can be attributed to low-contrasts surrounding the skin, fuzzy borders, the existence of
artefacts and irregular structures characterizing lesion images [48, 65, 211, 233 - 235]. Readers can refer to the previous
section detailing preprocessing techniques for image contrast enhancement and removal of occluding artefacts typically
found in both macroscopic and microscopic images. Some reports in the literature have equally suggested that tumour
areas manually extracted by dermatologists have been discovered to be sometimes characterized with inconsistency
[232, 236 - 238], validating the need for an automated lesion segmentation approach that can aid reproducibility of
results. In recent times, the literature has seen a great improvement in automating lesion image segmentation from the
surrounding  healthy  skin  parts  for  the  purpose  of  achieving  automated  diagnosis  of  such  lesion  images.  However,
Chang et al. [239] argued that it is impractical to perform fully automatic segmentation on all skin lesion images due to
reasons such as complexities surrounding acquisition of lesion images.

Most segmentation approaches incorporate some forms of image preprocessing to reduce or eliminate image noises
such as air bubbles, ruler marking, hair shafts that could confuse segmentation. An example of this is the application of
combined spline and B-spline by Abbas et al. [240] to enhance the quality of dermoscopic images before segmentation.
The Karkunen-Loéve Transform (KLT) also known as Principal Component Analysis/Transform (PCA/T) was used to
enhance the edges of the lesion image for better segmentation result in some studies [20, 57, 193, 241, 242]. The top-hat
and bottom-hat transformations were applied in a study [243] to maximize the contrast of lesion images in order to
achieve a comparable lesion segmentation using ensemble methods. The literature has chronicled the numerous lesion
localization (border detection) approaches that can help to segment pigmented skin lesion from the neighbouring region
in  an  automated  mode.  A  number  of  lesion  segmentation  algorithms  (including  edge  based,  region  based  and
thresholding) have equally been proposed in the literature. In the course of our study, we observed that most of the
reported  segmentation  methods  in  the  literature  are  based  on  the  colour  information  of  the  lesion  being  examined
arguably due to the simplicity of the representation of lesion colour properties. Some reports [244 - 249] have equally
used texture properties of skin lesions to estimate lesion boundaries. Commonly adopted texture feature methods used
in segmenting skin lesion areas include Grey Level Co-occurrence Matrix (GLCM) [245], Gabor functions [248], Laws
texture energy masks [54], Markov Random Field (MRF) models [246, 250]. Glaister et al. [244] equally proposed a
texture oriented lesion segmentation algorithm called Texture Distinctive Lesion Segmentation (TDLS). The TDLS
algorithm uses joint statistical information to characterise skin and lesion textures as representative texture distributions.
Maeda et al. [251] combined colour and texture features in a proposed Fuzzy-based hierarchical algorithm to achieve a
perceptual segmentation of dermoscopic lesion images.
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The edge based segmentation methods essentially use metadata about edges of a given lesion image in addition to
related post-processing techniques to estimate the boundary of a lesion [219, 234, 252, 253]. The implementation of
edge-based lesion segmentation often requires the use of the established edge operators such as Canny [254 - 256],
Prewitt [257], Sobel [258], Kirsch [259] and Laplacian of Gaussian (LOG) [260]. An edge-based segmentation method
based on dynamic programming using CIE L*a*b* colour space was proposed by Abbas et al. [233, 234]. However, the
major challenge in the application of  dynamic programming is  its  inability to accurately detect  outline of  lesion in
scenarios where areas belonging to the lesion are divided into multiple tumours.

Region-based methods use a seed-based approach that groups the regions according to common image properties
and relative information of the neighbouring pixels [236, 261 - 267]. Popular region-based methods include Fuzzy-
Based Split and Merge (FBSM), J-Image Segmentation (JSEG) [262, 268], Statistical Region Merging (SRM) [269,
270], Iterative Stochastic Region Merging (ISRM) [266] and watershed [226, 271]. At this juncture, we would like to
state  that  though  there  exists  a  similarity  between  edge-based  lesion  segmentation  and  region-based  lesion
segmentation,  but  both  are  different.  Essentially,  region-based  segmentation  methods  require  closed  boundary  to
properly estimate lesion borders, whereas such requirement is not essential for edge-based segmentation. It has been
argued  that  region-based  lesion  segmentation  sometimes  leads  to  over-segmentation  [272].  Over-segmentation  can
occur when the interior of a lesion exhibits multi-coloured areas. Many advances have been recorded in the literature to
resolve the aforementioned challenges, thus yielding effective region-based lesion segmentation. Ma & Tavares [273]
recently proposed an algorithm built on deformable model methods to define speed function on the lightness, saturation,
and colour information of a given dermoscopic image in order to estimate its lesion boundary. Geometric deformable
models  have been posed to implicitly  represent  the moving curve evolution in a  way that  helps to obtain desirable
features (such as regions and the boundaries of the skin lesions) for shape and colour analysis simultaneously [273].
Similarly,  a  saliency-based  segmentation  method  was  proposed  by  Ahn  et  al.  [274]  via  measurement  of  sparse
reconstruction errors against image backgrounds to estimate contrast discrimination between the lesion part of a given
image and the surrounding healthy skin. Saliency-based segmentation techniques help to resolve the problem of target
localization, such as the difficulties in segmenting lesion image with multi-coloured objects, as well as lesion images
having similar colour between the foreground and background region. The approach proposed by Olugbara et al. [275]
utilized a perceptual colour difference saliency with morphological analysis to achieve a compelling segmentation result
of lesions. A good future research would be to investigate how saliency segmentation can be used on lesion images with
multiple saliency-regions.

In  general,  contour  segmentation  methods  can  be  either  region-focused  or  edge-focused.  Edge  related  contour
segmentation typically applies edge detectors to estimate stopping function for terminating contours at distinct edges,
making it unusable for fuzzy edges. Region related contour segmentation computes region energy based on the mean
value  of  lesion  image  intensity  and  consequently  uses  global  image  information  to  terminate  contours  even  for
indistinguishable edges. Most contour-oriented lesion segmentation techniques are more or less similar to their region-
based segmentation method counterparts.  The similarity is due to the usage of seed-based approach in categorising
image region according to the common criteria between both methods. Contour oriented segmentation is often referred
to as snakes [219].  Frequently used contour-oriented methods include adaptive snake, robust snake [276],  Gradient
Vector Flow (GVF) snake [277, 278], Mean-Shift based GVF [279 - 282], level set [263, 264, 276, 283, 284] and radial
search  [285,  286].  Mete  &  Sirakov  [287]  discussed  enhancing  active  contour  model  with  optimum  parameters,
including  high  boost  filtering  to  achieve  comparable  segmentation  results  with  other  state-of-the-art  segmentation
methods. Similarly, Ivanovici & Stoica [288] suggested that a diffusion model for colour images can be used as external
energy for active contours in order to achieve lesion segmentation by independently computing diffusion at various
scales. The study reported by Yuan et al. [284] equally introduced a region-fusion-based segmentation framework by
combining graph partitioning methods with chan-vese level set to achieve a comparable lesion segmentation result. In
addition, Kasmi et al. [289] recently proposed a geodesic active contour (GAC) based lesion segmentation method that
employs an automatic contour initialization close to the actual lesion boundary. This approach was lauded to address the
sticking challenge at minimum local energy spots typically caused by noise artefacts such as hair shaft. Fig. (5) displays
an example of result after applying contour-based techniques called Line Segmentation Detection (LSD) [290] on an
image in order to segment occludinh hair artefacts.
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Fig. (2). Original Image.

Fig. (3). Preprocessed.

Fig. (4). Histrogram.

Fig. (5). Noise image.

Fig. (6). Equalised Histrogram.
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Fig. (7). Filled Histrogram.

Fig. (8). Segmented Image.

Fig. (9). Textual feature descriptors.

The thresholding technique is adjudged to be the most adopted approach in the literature for lesion segmentation
using the computation of image intensity [198, 206, 207, 221, 240, 247, 291 - 299]. The discussion of thresholding in
this section addresses segmentation of the lesion image rather than its usage in preprocessing of images. Typically,
thresholding technique involves a non-linear process of producing a binary image such as by assigning two levels to
pixels below or above a specified threshold value. Thresholding can be categorised based on the parameter usage as
either parametric or non-parametric. Parametric thresholding uses a set of parameters to control fitness of the model
while  non-parametric  thresholding  estimates  thresholds  by  optimizing  objective  functions  such  as  variance-based
functions (cluster variance) or entropy-based functions (cross entropy).  Non-parametric thresholding can be further
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categorised either as global thresholding based on whether thresholding is performed on an entire lesion image using a
single value or as local thresholding if a lesion image is partitioned into sub images, with each image region having
their respective threshold value. Most thresholding approaches discussed in the literature are seen to be global. Global
thresholding can be further classified as either a point dependent, if the threshold value is determined using grey level of
each pixel of the lesion image or as a region dependent if the threshold value is determined from the local property in
the neighbourhood of each pixel of the lesion image. According to the literature, the implementation of a particular
thresholding  technique  could  be  based  on  region  entropy,  local  lesion  property,  histogram shape,  spatiality,  image
attribute  similarity  as  well  as  clustering [300].  Notable  thresholding techniques  reported in  the  literature  for  lesion
image segmentation are based on popular thresholding algorithms such as Otsu [294, 301 - 306], type-2 fuzzy logic
[297, 307], random walker [308], Kapur [304, 305, 309], Kittler [310], Ridler [311] and Sahoo [312].

In relation to image processing, clustering is sometimes referred to as a multidimensional extension of thresholding.
Clustering  based  lesion  segmentation  techniques  generally  adopt  unsupervised  erudition  to  identify  a  finite  set  of
clusters to which image pixels would be grouped. Notable clustering methods vis-à-vis skin lesion image segmentation
include fuzzy c-means (FCM) [20, 238, 313, 314], k-means [193, 215, 315 - 317], g-means [248], density-based spatial
clustering [229, 230, 318 - 320], grid-based spatial clustering [318], wavelet transform [313, 321, 322] and Markov
random field (MRF). Recently, Khalid et al. [321] proposed an implementation of dynamic wavelet transform based on
Cohen–Daubechies–Feauveau  Biorthogonal  to  segment  lesion  images.  The  Independent  Histogram  Pursuit  (IHP)
algorithm  proposed  by  Gómez  et  al.  [193]  revealed  the  possibility  of  segmenting  lesion  images  using  K-means
clustering technique that is agnostic of colour space of the image and the number of image bands. Kockara et al. [323]
used a graph clustering segmentation technique based on the soft kinetic data structure to estimate lesion border of
microscopic  images  and  consequently  segmenting  the  lesion  images.  Mete  el  al  [230].  proposed  a  border-driven
density-based framework to identify skin lesion border by expanding regions at borders of a cluster. This approach was
further  improved  [229]  by  removing  preprocessing  dependency.  Castillejos  et  al.  [313]  proposed  an  ensemble  of
clustering based methods to segment lesion image by exploring all colour channels. Melli et al. argued in a comparison
study [324] that  mean shift  clustering can outperform other  colour clustering algorithms (median cut,  k-means and
fuzzy-c means) in terms of sensitivity and specificity as the number of clusters increases. Kockara et al. [325] argued
that density-based clustering produces a high precision and recall rate, with low border error when used to estimate
lesion image border leading to a superior result when compared to the FCM. Recently, Lemon et al. [320] advanced the
usage  of  density  clustering  by proposing a  skin  lesion border  detection  method based on web computing language
(WebCL) parallel density. The approach [320] takes advantage of Graphical Processing Unit (GPU) computing power
of web browsers to provide quick skin lesion border detection for dermoscopic images.

The usage of morphology and statistical information, together with clustering based approaches has equally been
reported in the literature. This technique involves the use of morphological features to estimate discontinuity in lesion
image structures [193, 261, 326 - 328]. Popular morphological based clustering methods include normalized cut [328],
Principal Component Analysis (PCA) [20, 57, 193, 242], linear component analysis (LDA) [329], median cut [324] and
grabcut [207].

There has been a growing need to advance lesion segmentation via machine learning system. This has led to the
application of several expert systems to aid segmentation of lesion images from surrounding healthy skin [238, 322,
327, 330 - 332]. Application of machine learning for lesion segmentation typically involves the use of expert systems to
process small  areas of  an image for  the purpose of  classification.  Subsequently,  the network system then classifies
different  areas  of  the  image  based  on  classifications  recognized  by  the  system.  Xie  et  al.  [331]  proposed  a  lesion
segmentation algorithm for dermoscopic images by combining Self Generating Neural Network (SGNN) with Genetic
Algorithm (GA). Frequently used neural network systems recorded in the literature for lesion segmentation include
Radial Basis Function (RBF), Back Propagation Network (BPN), Extreme Learning Machine (ELM), Markov Random
Field (MRF) [250, 327], Wavelet Network (WN), Multi-Layer Perceptron (MLP) [326] and Bayesian [327].

The literature has equally reported attempts to use ensemble of methods to improve lesion image segmentation, such
as  using  multiple  thresholding  algorithms,  multiple  clustering  approaches,  region-based  segmentation  with  neural
networks or combining thresholding with region-based methods [20, 226, 240, 243, 295, 303 - 305, 313, 315, 331, 333 -
335].  In a study [48],  variable threshold (based on binary imaging) and contour extraction were used to detach the
shapes of the masses before determining border outline of the lesion. A study [51] utilized Laplacian filter to localize
the lesion area, while zero-crossing algorithm helped the author to perform automatic outline of the lesion border. The
study  [41]  used  both  pixel-based  and  region-based  approaches  to  develop  an  algorithm,  which  is  referred  to  as
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Dermatologists-like  Tumour  Area  Extraction  Algorithm  (DTEA)  to  discriminate  the  actual  tumour  area  from  the
surrounding skin. The combination of statistical clustering of the lesion colour space and hierarchical region-growing
algorithm was used in a study [336] as a segmentation technique. In another study [65], segmentation was performed
using a combination of bimodal histogram based on fuzzy sets region growing. Three segmentation algorithms (global
thresholding, dynamic thresholding and a 3D colour clustering concept), together with fusion strategy were used [337]
to  obtain  binary  segmentation  of  the  lesion.  Pennisi  et  al.  [272]  proposed  a  fully  automatic  lesion  segmentation
procedure that combined edge based method (Canny) with region-based method (Delaunay triangulation) to resolve the
segmentation of lesion areas.

A number of good reviews have discussed and compared notable automated lesion segmentation approaches. In the
comparison study conducted by Mete & Sirakov [287], it was argued that density-based clustering performs better than
Active Contour Models (ACM) when segmenting noisy lesion images. However, the ACM was adjudged to perform
better when used with an optimum parameter. Celebi et al. [338] used a normalized probabilistic rand index to evaluate
five different lesion segmentation approaches which include Orientation-Sensitive Fuzzy C-means Method (OSFCM)
[314, 339], Dermatologist-like Tumour Extraction Algorithm (DTEA) [40, 41], mean shift clustering method [324],
modified  J-image  Segmentation  (JSEG)  method  [262,  268],  and  Statistical  Region  Merging  (SRM)  [269].  The
evaluation  reported  the  prowess  of  SRM  as  well  as  the  consistency  of  DTEA  across  varying  lesion  image  types.
Recently, a comprehensive lesion border detection was surveyed by Celebi et al.  [340] and some of the unresolved
border  detection  issues  were  discussed.  The  latest  review  by  Oliveira  et  al.  [221]  on  computational  methods  for
segmenting lesion images discussed several lesion boundary techniques. In the review, edge-based segmentation for
lesion image was discouraged due to the fact that edge-based segmentation doesn’t consider closed boundary, and as
such  may  produce  segmented  images  that  are  not  completely  closed.  The  comparative  evaluation  carried  out  by
Mendonça et al. [276] adjudged adaptive thresholding to produce the most favorable automatic segmentation of lesions,
while  robust  snake  was  said  to  have  produced  a  more  consistent  result.  Silveira  et  al.  [283]  however,  argued  that
adaptive thresholding as well as vector-valued Chan-Vese level set [341] yielded the least satisfactory result in their
comparative  work.  In  the  same  study  [283],  a  proposed  extension  of  Chan-Vese  level  set,  called  Expectation-
Maximization  Level  Set  (EM-LS)  method  which  uses  probability  density  functions  to  model  lesion  intensity
assumptions,  was  observed  to  produce  robust  skin  lesion  segmentation  result.  This  inconsistency  in  the  reported
evaluation  could  be  attributed  to  several  factors,  including  varying  data  set  used  as  well  as  different  comparative
evaluation metrics.

It is sometimes difficult to properly analyse different automatic border detection methods for lesion images without
subjective opinions resulting from the evaluation of the parameters used. Celebi et al. [338] suggested a Normalized
Probabilistic Rand Index (NPRI), which takes into account the variations in the ground-truth images when evaluating
different skin lesion segmentation methods. In the study [338], NPRI was adjudged to outperform the commonly used
exclusive  OR  (XOR)  measure.  Garnavi  et  al.  [342]  equally  proposed  a  weighted  performance  index  for  objective
evaluation of five automated border detection methods for dermoscopy images. The weighted index was computed from
six standard evaluation metric (sensitivity, specificity, accuracy, precision, border error, and similarity). The approach
was further optimized in a study [343] by applying constrained non-linear multivariable optimization method in the
computation of the weights.

We  observed  that  most  reported  work  in  the  literature  on  lesion  image  segmentation  has  been  on  microscopic
(dermoscopic) images. From the literature, only a few efforts have been recorded in the usage of clinical (macroscopic)
images for evaluating automatic lesion area segmentation approaches [249, 261, 298, 306, 335, 344]. This arguably
could be attributed to the increased adoption of dermoscope in the evaluation of skin lesion images. Cavalcanti et al.
[335]  proposed  an  Independent  Component  Analysis  (ICA)  based  ensemble  methods  to  estimate  lesion  areas  from
healthy surrounding skin. In the same study [335], ensemble of thresholding and level set methods were then applied for
the  actual  lesion  boundary  detection  and  segmentation  thereof.  Recently,  Flores  &  Scharcanski  [249]  proposed  an
unsupervised dictionary learning method called Unsupervised Information Theoretic Dictionary Learning (UITDL) for
estimating lesion area in macroscopic images.

The analysis made from the reports discussed in the literature suggests that a number of past works in the lesion
segmentation efforts have focused on the development of algorithms based on colour information in the non-uniform
space. There’s however a growing need towards optimizing segmentation algorithms in order to reduce computation
time. In a bid to resolve the later, Okuboyejo et al. [207] proposed a Fast Image Segmentation (FIS) method based on
the notable Contrast-Limited Adaptive Histogram Equalization (CLAHE), morphological operations, thresholding and



A Review of Prevalent Methods The Open Dermatology Journal, 2018, Volume 12   29

grabcut techniques to localize lesion area from the surrounding healthy skin in a recorded time.

While  most  of  the  segmentation  techniques  discussed  above  yielded  considerable  promising  results,  the  main
problem with most of the approaches is that the computer-extracted regions sometimes were often smaller than the
dermatologist-drawn ones (segmentation ground truth). Consequently, this makes some areas surrounding the tumour
which  are  important  features  in  the  diagnosis  to  be  excluded  from  the  subsequent  analysis  [96,  103].  There  are
indications from the literature that many existing segmentation systems have high sensitivity rates towards effective
diagnosis,  they  however  experience  high  computing  time  [41,  57].  The  usage  of  more  than  one  algorithm  for
segmentation is one of the major causes of the non-realistic computing time as highlighted in a study [57]. It has also
been noted that numerous past works have focused significantly on developing algorithms based on colour information
in non-uniform colour spaces (disregarding the role of textural information). This has been reported to sometimes yield
unsatisfactory  segmentation  results  [234].  Another  unresolved  concern  is  the  development  of  clinically  oriented
evaluation methods that can adapt variations in multiple manual borders [340]. While future research most likely would
continue to use the mixture of algorithms due to increasing success rate of such approaches, more efforts should be
made  towards  optimizing  these  algorithms  to  reduce  their  computing  time.  We would  also  like  to  suggest  that  the
comparison of segmentation algorithms should be done on the same set of lesion images to ensure proper accuracy
measure.

6.3. Feature Extraction

The primary objective of feature extraction is to quantify the macroscopic (clinical) or microscopic (dermoscopic)
signs  used  in  determining  the  malignancy  of  a  skin  lesion  by  a  set  of  finite  numerical  features.  Isolation  of
discriminating  features  in  a  given  lesion  image  is  an  essential  step  towards  effective  automated  lesion  image
classification.  However,  the  vast  variety  of  dermoscopic  images  and  highly  subjective  definition  of  features
characterizing these images have made the extraction of needful features a tedious task [40, 64, 96, 345, 346]. Skin
distortion  caused  by  bacterial  and  viral  skin  infections  also  makes  analysis  of  features  very  difficult.  In  addition,
variables such as body location, subject parameters (age), imaging parameters (lightening or camera), and direction
from  which  lesion  image  is  viewed  and  illuminated,  greatly  influence  the  resulting  features  that  can  possibly  be
extracted  for  classification  purpose.  These  challenges  typically  add  some  overheads  towards  achieving  automatic
screening and diagnosis of medical images, especially skin lesions.

There have been numerous attempts reported in the literature to solve some of the above-mentioned challenges. One
of  the  best  approaches  to  address  these  aforementioned  challenges  in  automating  medical  imaging  diagnosis  is  to
simplify the objective of the analysis and exploit some kinds of hypothetical information about the image structures.
The information about the structures to be analysed can be anatomical knowledge about their typical appearance (shape,
grey levels and position) or statistical knowledge of their properties (such as the greylevel of the tissues included in
those structures). The images can then be classified using their morphological properties such as colour, shape, edges
and texture.

The familiarity and potential discriminating power of the previously mentioned lesion diagnostic algorithm methods
(such  as  ABCD  rule  of  dermoscopy,  ABCD  criteria  and  Pattern  analysis)  have  led  to  their  usage  in  feature
quantification. These feature descriptors can be dermoscopic, clinical or simply morphological in nature. Most reports
discussed in the literature derived various discriminating lesion feature descriptors from these diagnostic algorithms,
especially from the ABCD rule for dermoscopic images and ABCD criteria for clinical images. Feature descriptors used
in  the  discrimination  of  skin  lesion  can  favourably  be  categorised  mostly  as  either  photometric  or  textural.  In  the
literature,  it  has  been  observed  as  common  practice  to  use  an  amalgamation  of  various  descriptors  for  lesion
discrimination. Essentials features with corresponding discriminating properties used across the reviewed literature has
been listed in Table 1.

Photometric  has  been  seen  to  constitute  the  majority  of  the  properties  used  in  the  literature  when  examining
descriptors that could be used in classifying skin lesions. Photometric features include colour, island of colour, colour
homogeneity  &  colour  histogram  etc.  Barata  et  al.  [64]  argued  that  photometric  features,  when  used  with  textual
descriptors, yield a good result, however, the photometric features were observed to outperform the textual features if
used in isolation. Stoecker et al. [347] equally suggested in his work that greater separation of melanoma from benign
lesions is achieved using relative colour than using absolute colour.

Texture-based  descriptors  are  yet  another  set  of  features  that  reflect  the  structural  pattern  of  lesion  surfaces
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irrespective of the colour or illumination characterizing the lesion. Texture descriptors can be categorised as spatial
frequency  based,  statistical  based,  geometric  based  or  model  based.  Spatial  frequency  based  texture  features  are
frequently associated with wavelet  and ridgelet  transformations.  Statistical  based descriptors include co-occurrence
matrices and Fourier properties for describing lesion’s local neighbourhood properties. Geometric features describe skin
lesion  characteristics  that  include  shape,  border,  symmetry,  area,  diameter,  variance,  perimeter,  circularity  and
anisotropy. Model based textual descriptors are frequently associated with fractals and Markov random fields. Due to
simplicity  and  ease  of  feature  retrieval,  commonly  used  texture  descriptors  include  co-occurrence  texture  features,
wavelet features and fractal-based texture features.

Table 1. Essential features.

Features Properties References
Asymmetry asymmetry index [27, 32, 40, 57, 62, 65, 130, 252, 253, 291, 298, 336, 344, 363, 382, 387,

388]
circularity factor [40, 51, 62, 267, 291, 337, 344, 349, 366, 382, 386, 388 - 391]
skewness [103, 392]

Border irregularity edge abruptness [57, 65, 130, 252, 291, 351]
lesion areas and perimeters [62, 252, 253, 337, 363, 366, 367, 379, 382]
radial distance [267, 369]
bounding box [267, 344, 369, 377, 382, 390]
mean and variance of lesion boundary magnitude [40, 57, 337, 344, 366, 393]

Border Sharpness compactness index [27, 57, 65, 252, 337, 344, 351, 379, 382, 394]
fractal dimension [48, 57, 65, 96]

Colour colour homogeneity [51, 57, 65, 252, 347, 351, 363]
island of colour [40, 51, 58, 103, 130, 366, 382, 391]
colour histogram [28, 64, 198, 292, 299, 345, 366, 370, 376, 377, 379, 382, 395 - 398]
RBG statistics (such as ratio, chromaticity, spectral) [57, 103, 252, 253, 291, 337, 344, 367, 382, 385, 392, 393]

Diameter lesion diameter [51, 57, 168, 252, 344, 369]
Differential
Structures

pigmented network (typical/atypical) [17, 21, 28, 52, 58, 93, 94, 121, 127, 190, 242, 291, 347, 358, 371, 373,
376, 399 - 406]

homogeneous areas [61, 382, 407]
branched streaks globules [17, 52, 93, 94, 345, 400, 405, 406, 408]
structure-less areas (such as dots, globules, blotches) [17, 52, 93, 94, 121, 291, 345, 357, 358, 376, 400, 402, 405, 406, 408 -

410]
blue-white veil [17, 52, 58, 121, 291, 372, 400, 403]

Lesion Surface
Structures

co-occurrence texture features [40, 48, 51, 103, 291, 344, 347, 351, 366, 369, 376, 382, 386, 391, 392]
wavelet texture features [62, 64, 336, 386]

Other features correlation index between geometry and photometry [57, 65]
sonography characteristics, hypo-echogenicity [57, 108, 177, 411, 412]

Co-occurrence texture descriptors such as entropy, correlation, energy, contrast, homogeneity etc. are based on co-
occurrence matrices, typically the GLCM. (Fig. 9) detailed some of the frequently used texture descriptors, as well as
corresponding  computation.  The  GLCM  [348]  also  known  as  greylevel  spatial  dependence  matrix,  is  a  form  of
statistical  method  of  examining  texture  in  relation  to  image  pixels.  GLCM outlines  within  a  grey  scale  image,  the
probability of greylevel ἱ occurring at a distance in direction θ from grey level ĵ.

Wavelet  texture  features  such  as  wavelet  energy,  variance  and  residual  energy  are  based  on  wavelet  transform
coefficients. Fractal based texture features such as mean fractal dimension, local connected fractal dimension and global
box-counting  are  based  on fractal  dimensions.  One major  shortfall  of  local  fractal  dimensions  and local  connected
fractal dimensions, however, is the dependency on the choice of the maximum window size [48]. However, while it is
desirable  to  determine  features  to  represent  these  structures  directly,  extracting  these  features  is  often  challenging
primarily due to a vast variety of dermoscopy images and the highly subjective definitions of these features [40, 41, 96].

A  number  of  different  feature  selection  methods  have  been  used  in  the  literature  towards  ensuring  appropriate
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discriminating features for lesion image classification. Frequent selection methods reported in the literature include
Sequential Floating Forward Selection (SFFS) [337], Sequential Floating Backward Selection (SFBS) [337], Leave-
One-Out, Cross Validation (xVal), Plus-I-Take-Away-r, and Genetic algorithm. Zagrouba and Barhoumi [57] argued
that relative reduction of selection features could yield 50% reduction in the processing time, as well as 65% reduction
in the time required to train classifiers.

While  these  selectors  have  produced  positive  results  and  contribute  positively  towards  classification  of  lesion
images, there resource intensive patterns are still a concern. There is thus a growing need to improve the algorithms
implemented by each of the selectors to better  achieve optimal feature selection process,  which in turn would help
reduce complexity and time-consuming computation experienced during quantification of features [349].

6.4. Classification of Lesion

Image classification involves using selected features of an image to classify pixels of the image into one of the
several classes depending on specific knowledge domain. This could be in the form of training a model using a data set
and then testing the model using a data set which is disjoint from the training set. Most lesion classifications are binary
in nature, distinguishing between benign and malignant moles. The classification results are typically influenced by the
chosen  feature  descriptors  and  strength  of  the  classifiers.  Performance  of  the  automated  classification  is  equally
dependent on the degree of dataset population [168].

The  two  main  classification  types  as  reported  in  the  literature  in  relation  to  medical  imaging  are  supervised
classification and unsupervised classification. Supervised classification uses image analysis tool to generate a statistical
categorisation (such as mean and co-variance) of the reflectance of each identified information class. The completion of
the categorisation then fosters effective classification by examining the reflectance of each pixel and deciding on the
best  matching  signatures.  Decision  criterion  such  as  maximum  likelihood  can  be  used  for  cases  of  overlapping
signatures in order to assign pixels to the highest probable class. Unsupervised classification typically examines a large
number of unknown pixels and divides them into a number of classes based on natural groupings present in the image
values using procedures such as clustering. Essentially, unsupervised classification groups values that are close together
in a measurement space as a single class, thus arranging the data in different classes to be comparatively separated
[350].

The  literature  has  reported  the  application  of  several  classification  methods  for  lesion  images.  Frequently  used
among these methods are the Artificial Neural Network (ANN), Decision Trees (DT), K-Nearest Neighbour (KNN),
Support Vector Machine (SVM) and Regression Analysis (RA) classifiers. Similar to the neurons of a human brain,
ANN comprises of an interconnected group of nodes, otherwise termed as neurons. Neural network models typically
consist of both an adaptive weight that is adjusted during model training, as well as the capability to use quantitative
characterization to approximate non-linear functions of their inputs.

Popular  ANN  methods  include  Back  Propagation  Network  (BPN)  [22,  40,  292,  332,  347,  351  -  355],  Auto
Associative Network (AAN) [22], Multi-Layer Perceptron (MLP) [57, 168, 224, 236, 349, 351, 355 - 357], and Single
Layer Perceptron (SLP) [51, 358]. In the literature, extreme Learning Machine (XLM), SLP and MLP seem to be the
most commonly used Feed Forward Network (FFN) methods. Main benefits of Bayesian network include its  quick
training capability and insensitivity to irrelevant features [298]. Sample application of ANN for lesion classification
purpose can be seen in different studies [22, 40, 51, 57, 63, 168, 236, 292, 332, 352, 353, 359]. A major challenge in the
application of ANN includes the excessive time that might be required in training dataset.

Bayesian  network  is  another  frequently  used  classifier  in  the  space  of  lesion  discrimination  [351].  It  is  a
probabilistic graphical model that applies Directed Acyclic Graph (DAG) to represent a set of random variables with
their corresponding conditional dependencies. It should be noted that the term Bayesian network depicts the usage of
Bayes  rule  for  probabilistic  inference  and  not  necessarily  implies  commitment  to  Bayesian  statistics.  One  major
advantage in the use of Bayesian network is its insensitivity to irrelevant features. Its drawback, however, includes
sometimes  undesirable  assumption  declaring  that  discriminating  features  are  independent  [298].  Application  and
analysis of Bayesian network can be seen in different studies [224, 360 - 364]. In the literature, Hidden Naïve Bayes
(HNB)  has  been  observed  to  perform  better  than  the  Bayesian  network  method  used  [62,  361].  If  a  set  of  lesion
outcomes represented by a vector v=v1, v2, …, vn is to be classified to j possible classes (Cj), then the conditional
posterior probability using Bayesian rule can be expressed as:
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Regression  analysis  is  a  statistical  analysis  for  estimating  the  relationship  between  dependent  (criterion)  and
independent variables (regression function or predictors). This typically tracks changes in the dependent variables as
one of the members of the predictors is kept constant while other members of the predictors are varied. Frequently used
regression analysis methods include Discriminant Function Analysis (e.g. Linear or Quadratic Regression) [40, 57, 60,
137, 253, 292, 364 - 367] and Logistic Regression [18, 75, 93, 102, 137, 368, 369].

Decision trees typically adopt a tree-like graph of possible decisions and the corresponding outcomes which could
trigger another decision till a specific conclusion is reached [291, 361, 369, 370]. The major merit of using decision
trees includes the speed at which it can be trained as well as its ease of use. Frequently used DT methods include C4.5
Decision Tree [291, 371 - 373], Logistic Model Tree (LMT) [291, 361, 374], Random Forest [357, 361, 370, 375], and
Gradient Boosting (e.g. Adaptive Boosting: AdaBoost) [64, 291, 375 - 380]. Drawbacks seen in the usage of decision
trees include difficulties in dealing with correlated features and the likelihood of over-fitting which typically results in
excessive  adjustments  [298].  DT  method  was  dubbed  to  perform  the  least  in  the  comparative  study  described  by
Dreiseitl et al. [381], however, comparable to human expert.

The K-Nearest Neighbour (K-NN) is an algorithm that can also be applied as a classifier by storing the available
cases and then classifying new cases based on the similar measurement in feature space [64, 198, 337, 344, 362]. The
classifier input consists of k closest sample in the feature space, while its output result in class membership of objects
being sampled. Contrary to some other classifiers, K-NN does not implement a decision boundary, however, uses the
elements of the training set to estimate the density distribution of the data [381]. Hierarchical K-NN is an optimized
subset of K-NN, however, it adopts both observation and feature space in its classification procedures.

The SVM is a non-probabilistic binary linear classifier that uses a learning module to analyse patterns within a
collection of data for possible classification into one of the two categories. It adopts supervised learning for labelled
data and an unsupervised clustering approach when data is not labelled. SVM also provides a unified framework in
which different learning machine architectures can further be generated through an appropriate choice of kernel [382].
Applications of SVM can be seen in some studies [42, 130, 291, 354, 363, 369, 383 - 386]. In a number of studies,
SVM  was  judged  to  outperform  several  classifiers  [354,  357,  360,  363,  375];  and  it  is  often  praised  for  its  good
generalization  and  simplification  of  the  non-  linear  data  separation  by  means  of  kernel  functions  [298].  While  the
application of SVM in discriminating between melanocytic lesions has seen a number of good results, it sometimes
could be very sensitive to noise hence producing a poor result.  Contrary reports to the effectiveness of SVM when
compared to other classifiers has equally been reported by some research works [64, 291]. SVM and MLP performed
better than the counterpart classifier in the confusion matrix described in a study [357] between MLP, K-NN, Random
Forest  (RF)  and  SVM.  In  a  similar  study  described  by  Dreiseitl  et  al.  [381],  logistic  Regression,  ANN  and  SVM
produced good discriminating results for PSL compared to KNN and Decision Tree methods.

Kreutz et al. [336] argued for the need to incorporate a combination of expert systems in classifying lesion images
to enable data set to be split into regions where each expert system works effectively. Results from each expert system
can then be aggregated by a gating network. This is to help resolve recurrent challenges faced when training a single
expert  system  to  classify  varying  degrees  of  input  space.  In  effect,  when  input  space  is  separated  and  targeted,
scalability and interpretability of solutions increase. Similarly, A Multiple Expert-Based Melanoma Recognition System
for Dermoscopic Images of Pigmented Skin Lesions has been proposed by Rahman and Bhattacharya [198, 299] by
using  combination  rules  generated  with  the  application  of  Bayes’  theorem  to  produce  a  probabilistic  output.  The
comparative  study  discussed  by  Ruiz  et  al.  [351]  equally  argued  that  collaborative  classifiers  produced  better
classification  compared  to  the  usage  of  individual  classifiers.

Furthermore, Dreiseitl et al. [381] suggested that linear factors contribute to a better discrimination compared to
non-linear  elements  in  the  classifying  models.  This  was  proved  in  the  comparative  analysis  [381]  between  K-NN,
Logistic  Regression,  ANN,  DT  and  SVM,  where  linear  method  (logistic  regression)  outperformed  non-linear
counterpart.  Other  remarkable  classifiers  as  reported  in  the  literature  include  Lacunarity  analysis  [96]  and  Markov
Random Field MRF [246]. The literature also records the use of rule-based process for classifying skin lesion images.
Frequently used rule-based procedures include Pattern Analysis, ABCD rule, ELM 7-point checklists, Menzies score, 7
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Features for melanoma. Notable results have been recorded in the literature by various classification methods; however,
there still exists some unresolved concerns in relation to effective lesion classification. Highlights of the issues include
the great unbalance between lesion image classes, the difficulty in defining discriminating visual features and the effect
of  multiplicities  of  some  lesion  image  classes.  The  execution  speeds  of  the  classification  algorithms  and  resource
intensive  nature  of  some  of  these  classifiers  have  posed  a  need  for  a  more  optimized  approach,  especially  when
considering mobile portability of these solutions.

CONCLUSION

The development of automated systems capable of assisting physicians in medical imaging tasks has been seen to be
marred by the presence of noise such as masking structures, variability of biological shapes and tissues, and imaging
system  anisotropy.  These  noises  make  an  automated  analysis  of  both  microscopic  and  macroscopic  images  a
cumbersome  task.  We  discussed  different  approaches  proposed  in  the  literature  for  resolving  some  of  the  doubts
resulting from the automated diagnosis of microscopic (dermoscopic) as well as macroscopic (clinical) images.

Most  articles  in  the  literature  often  assume  that  malignant  moles  are  pigmented.  However,  there  has  been  an
increase in the reports of non-pigmented skin tumours, as well as clinically and dermoscopic featureless moles being
misdiagnosed during both clinical examination and dermoscopy screening, thus necessitating a careful approach.

Among others, subjective opinions resulting from the evaluation of parameters used in lesion segmentation were
recorded as  one of  the  difficulties  encountered in  the  literature  in  an attempt  to  analyze different  automatic  border
detection methods for lesion images. To achieve a proper measure of accuracy and consistent results when performing
lesion localization, we would like to recommend that comparison of segmentation algorithms should be done on the
same set of lesion images.

We propose that more efforts should be geared towards optimizing feature selection in order to reduce complexity
and time-consuming computation. A number of the classification models proposed in the literature still exhibit some
challenges such as unbalance between lesion image classes, the difficulty in defining discriminating visual features and
the  effect  of  multiplicities  of  some  lesion  image  classes.  We  believe  that  given  a  good  classification  model,  less
emphasis could be given to the number of features required to discriminate between lesion categories.
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